Powered by OpenAIRE graph
Found an issue? Give us feedback

Microsoft (United States)

Microsoft (United States)

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
22 Projects, page 1 of 5
  • Funder: UK Research and Innovation Project Code: EP/L016796/1
    Funder Contribution: 4,099,020 GBP

    High Performance Embedded and Distributed Systems (HiPEDS), ranging from implantable smart sensors to secure cloud service providers, offer exciting benefits to society and great opportunities for wealth creation. Although currently UK is the world leader for many technologies underpinning such systems, there is a major threat which comes from the need not only to develop good solutions for sharply focused problems, but also to embed such solutions into complex systems with many diverse aspects, such as power minimisation, performance optimisation, digital and analogue circuitry, security, dependability, analysis and verification. The narrow focus of conventional UK PhD programmes cannot bridge the skills gap that would address this threat to the UK's leadership of HiPEDS. The proposed Centre for Doctoral Training (CDT) aims to train a new generation of leaders with a systems perspective who can transform research and industry involving HiPEDS. The CDT provides a structured and vibrant training programme to train PhD students to gain expertise in a broad range of system issues, to integrate and innovate across multiple layers of the system development stack, to maximise the impact of their work, and to acquire creativity, communication, and entrepreneurial skills. The taught programme comprises a series of modules that combine technical training with group projects addressing team skills and system integration issues. Additional courses and events are designed to cover students' personal development and career needs. Such a comprehensive programme is based on aligning the research-oriented elements of the training programme, an industrial internship, and rigorous doctoral research. Our focus in this CDT is on applying two cross-layer research themes: design and optimisation, and analysis and verification, to three key application areas: healthcare systems, smart cities, and the information society. Healthcare systems cover implantable and wearable sensors and their operation as an on-body system, interactions with hospital and primary care systems and medical personnel, and medical imaging and robotic surgery systems. Smart cities cover infrastructure monitoring and actuation components, including smart utilities and smart grid at unprecedented scales. Information society covers technologies for extracting, processing and distributing information for societal benefits; they include many-core and reconfigurable systems targeting a wide range of applications, from vision-based domestic appliances to public and private cloud systems for finance, social networking, and various web services. Graduates from this CDT will be aware of the challenges faced by industry and their impact. Through their broad and deep training, they will be able to address the disconnect between research prototypes and production environments, evaluate research results in realistic situations, assess design tradeoffs based on both practical constraints and theoretical models, and provide rapid translation of promising ideas into production environments. They will have the appropriate systems perspective as well as the vision and skills to become leaders in their field, capable of world-class research and its exploitation to become a global commercial success.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/I031014/1
    Funder Contribution: 5,528,990 GBP

    A paper mbius strip is like a cylinder in which the paper twists as it goes round. It looks looks quite like the simple cylinder, but it cannot be transformed into one without some drastic action such as cutting it with a pair of scissors. The mathematics describing this fact is known as topology. It allows the classification of shapes and objects into sets whose members are fundamentally similar to each other, and fundamentally different from objects in other sets. This seems abstract, and it is. However, abstract concepts can sometimes point the way to futuristic applications of sciences. One of the ambitious dreams of modern physics and electrical engineering is to build a quantum computer, a machine that would function completely differently to today's computers, and be a step-change in technology. In order to do that, one has to harness a property of quantum mechanics called 'coherence', which allows its laws to be realised. In the everyday world, fully coherent systems are extremely rare, because when they couple with everything around them, that environment acts like a source of strong random noise that scrambles the system up. This 'decoherence' is one of the core problems of the field. Ground-breaking theoretical research over the last decade has shown that there might be special classes of quantum system which are topologically distinct from the vast majority of other systems. This means that they will not couple to the environmental noise that is such a problem, and offer a route to overcoming decoherence. The second key issue for an electronics revolution is understanding what happens when you severely disturb even a normal quantum mechanical system. This is called driving it from equilibrium, and is going to be more and more important as we try to make electronics run faster and over smaller distances. We understand equilibrium quantum physics very well, but as soon as we go far from equilibrium we enter unexplored territory.In this Programme, we will address both these issues. Building on a breakthrough which has shown that topology is much more important in modern materials than we had ever suspected, we will perform a series of interlinked projects aimed at establishing which materials are most likely to offer topological protection from decoherence. Although ambitious, this is not an empty dream. Microsoft, who formally support our work, have created an entire research centre in the USA to work towards it. Their efforts are mainly theoretical, while ours will be mainly concerned with concrete experiments both on naturally occurring materials and on specially engineered hybrids. The second thrust of our Programme, non-equilibrium quantum mechanics, will be mostly theoretical work to begin with. Its primary focus will be gaining insights that will be of relevance to futuristic electronics in general, but we believe there is particular value in coupling that work with the investigation of topological effects. Nothing is proven yet, but there are good grounds to think that non-equilibrium systems may themselves ultimately prove to be the best platform for stablising the topological excitations that so many people are seeking.Our work is highly adventurous, and will push back the frontiers of current knowledge. Doing it as a co-ordinated Programme will bring exactly the cross-fertilisation of ideas and techniques, and of experiment and theory, that maximises the chances of success. The scale of a Programme also enables engaging with top international collaborators. In addition to working with Microsoft's research centre, we will exchange ideas and personnel with groups from Harvard, Berkeley, Cornell and Princeton in the USA, Grenoble in France and Tokyo and Kyoto in Japan. Major challenges require this level of global collaboration, which will expose the young people who we will train to the very best minds.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S022074/1
    Funder Contribution: 5,312,500 GBP

    The vision of this CDT is to enhance society's resilience to changes in our environment through the development of Environmental Intelligence (EI): using the integration of data from multiple inter-related sources and Artificial Intelligence (AI) to provide evidence for informed decision-making, increase our understanding of environmental challenges and provide information that is required by individuals, policy-makers, institutions and businesses. Many of the most important problems we face today are related to the environment. Climate change, healthy oceans, water security, clean air, biodiversity loss, and resilience to extreme events all play a crucial role in determining our health, wealth, safety and future development. The UN's 2030 Agenda for Sustainable Development calls for a plan of action for people, planet and prosperity, aiming to take the bold and transformative steps that are urgently needed to shift the world onto a sustainable and resilient path. Developing a clear understanding of the challenges and identifying potential solutions, both for ourselves and our planet, requires high quality, accessible, timely and reliable data to support informed decision making. Beyond the quantification of the need for change and tracking developments, EI has another important role to play in facilitating change through integration of cutting edge AI technology in energy, water, transport, agricultural and other environmentally-related systems and by empowering individuals, organisations and businesses through the provision of personalized information that will support behavioural change. Students will receive training in the range of skills they will require to become leaders in EI: (i) the computational skills required to analyse data from a wide variety of sources; (ii) environmental domain-specific expertise; (iii) an understanding of governance, ethics and the potential societal impacts of collecting, mining, sharing and interpreting data, together with the ability to communicate and engage with a diverse range of stakeholders. The training programme has been designed to be applicable to students with a diverse range of backgrounds and experiences. Graduates of the CDT will be equipped with the skills they need to become tomorrow's leaders in identifying and addressing interlinked, social, economic and environmental risks. Having highly trained individuals with a wide range of expertise, together with the skills to communicate with a diverse range of stakeholders and communities, will have far reaching impact across a wide number of sectors. Traditionally, PhD students trained in the technical aspects of AI have been distinct from those trained in policy and business implementation. This CDT will break that mould by integrating students with a diverse range of backgrounds and interests and providing them with the training, in conjunction with external partners, that will ensure that they are well versed in both cutting edge methodology and on the ground policy and business implementation. The University of Exeter's expertise in inter- and trans-disciplinary environmental, climate, sustainability, circular economy and health research makes it uniquely placed to lead an inter-disciplinary CDT that will pioneer the use of AI in understanding the complex interactions between the environment, climate, natural ecosystems, human social and economic systems, and health. Students will benefit from the CDTs strong relationships with its external partners, including the Met Office. Many of these partners are employers of doctoral graduates in AI and see an increasing need for employees with skills from across multiple disciplines. Their involvement in the planning and ongoing management of the CDT will ensure that, in this rapidly changing domain, the CDT delivers leading-edge research that will enable partners and others to participate effectively in EI and lead to optimal employment opportunities for its graduates.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K030353/1
    Funder Contribution: 92,718 GBP

    Testing is a crucial part of any software development process. Testing is also very expensive: Common estimations list the effort of software testing at 50% of the average budget. Our society increasingly depends on a working information infrastructure for more and more aspects of civic, commercial, and social life, while software at the same time becomes ever more complex. For example, a modern car has up to 100 million lines of software code, and software errors can easily lead to fatal consequences. Improving techniques to identify errors in software is therefore of utmost importance. Manual testing is common practice in software development. As manually testing a program is a laborious and error prone task, automation is desirable. However, automation requires the user to specify the correct behaviour up-front in terms of a specification, or later by adding test oracles to automatically generated tests - both alternatives are difficult. This problem is obliterated as test quality is usually measured with oracle-agnostic code coverage metrics. In truth, however, a test without a good oracle cannot find software bugs. This is the oracle problem, one of the longest standing and greatest remaining challenges in software testing. As both writing specifications and writing test oracles is difficult and needs to be done manually, this proposal aims to push automation further by exploring the middle ground: The novel concept of an oracle template allows to specify what should be tested and checked, but crucially, it does not require specifying the expected behaviour. Instead, automated test generation instantiates user-specified oracle templates to concrete tests with oracles, and the developer decides case by case about correctness. Thus, programs can be tested without the developer needing to write a specification or having to suffer through seemingly purposeless generated tests. Because test generation is driven by oracles, all tests have a purpose and the essential oracles required to be effective at finding software bugs. The novel concept of oracle templates requires extension of the current state of the art in test generation, as current techniques either assume the existence of an automated oracle (e.g. a specification) or focus exclusively on the code. This creates three challenges, which will be addressed in this project: -- Existing code-based testing techniques focus on reaching points in the code. This project will define the concept of oracle templates, and will explore test generation based on oracle templates as a search problem. Given an oracle template, search-based testing techniques will automatically create instances, which are test cases with oracles. -- Systematic testing is traditionally driven by the idea that a good test set covers all the code, which completely ignores the test oracle problem. This project will define systematic criteria and corresponding search-based test generation techniques to thoroughly test programs based on oracle templates. These criteria will ensure coverage of oracle templates, but will also ensure that the code is executed and checked by oracles (e.g. by applying mutation and data-flow analysis). -- It is impossible to take the human out of the software testing loop completely. Oracle templates are an attempt at minimizing the human effort, but the task of writing oracle templates still requires manual effort. Therefore, this project will explore strategies to automatically synthesise oracle templates based on standard testing patterns and usage examples. Ultimately, a developer would have all tests and oracles generated automatically on the click of a button, leaving only the task of confirming correctness of the produced examples. The success in addressing these challenges will be measured using automated experiments, controlled studies with student subjects, and industrial case studies at Google and Microsoft.

    more_vert
  • Funder: European Commission Project Code: 575828-EPP-1-2016-1-BE-EPPKA2-KA
    Funder Contribution: 996,830 EUR

    ITELab (Initial Teachers Education Lab) was a Knowledge Alliance project (2017-2019) between higher education institutions and industry to foster innovation and knowledge exchange in initial/preservice teacher education (ITE). The ITELab Knowledge Alliance project included six partner universities providing teacher education, of which five piloted the modules and student MOOC and one acted in an evaluation capacity. Project partners also include three companies that offer Information and Communications Technology (ICT) solutions and professional development for teachers.ITELab was co-ordinated by European Schoolnet (EUN), a pan-European network of 34 Ministries of Education concerned with the transformation of teaching and learning in schools. EUN's work in previous projects with Ministries of Education, plus a needs analysis carried out with teacher educators highlighted, that the way in which student teachers currently receive training on ICT is a key roadblock related to the mainstreaming of innovative pedagogical practice that involves ICT. There is also a ‘disconnect' between ITE and continuing professional development (CPD) and, as a consequence, in-service training on the pedagogical use of ICT is increasingly required to equip teachers with the essential competences that they did not acquire during their initial training.Universities and companies worked together in ITELab, along with Ministries of Education, national ICT agencies and other stakeholders (participating as Associate Partners), to address these issues. The project provided data and case studies that highlighted new approaches to integrating ICT within ITE courses and the challenges that still need to be addressed in order to boost innovation in this area within higher education. The project co-designed and tested new course modules and a MOOC for student teachers extending to universities and student teachers from across Europe. The project also created and ran a new ITE University-ICT industry Forum to share knowledge with a wider group of stakeholders online and in three Capacity Development Workshops. The ITELab project was managed under the umbrella of EUN's Future Classroom Lab (FCL) an inspirational learning environment to rethink the role of pedagogy, technology and design in classrooms. A new EUN FCL-ITE group has been formed to continue the knowledge exchange around the need to innovate in ITE to support the development of the digital pedagogical competences of student teachers. The group continues the work started as part of the EC-funded ITELab project (2017-2019) and engages all education stakeholders ( universities, industry, schools, MoE and policymakers) with its work being shared in online events and at EUN's FCL School Innovation Forum and EMINENT 2020. http://fcl.eun.org/ite

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.