Powered by OpenAIRE graph
Found an issue? Give us feedback

Aernnova (Spain)

Aernnova (Spain)

14 Projects, page 1 of 3
  • Funder: European Commission Project Code: 945521
    Overall Budget: 112,809,000 EURFunder Contribution: 79,628,800 EUR

    The Airframe ITD aims at re-thinking and developing the technologies as building blocks and the “solution space” on the level of the entire or holistic aircraft: pushing aerodynamics across new frontiers, combining and integrating new materials and structural techniques – and integrating innovative new controls and propulsion architectures with the airframe; and optimizing this against the challenges of weight, cost, life-cycle impact and durability.

    more_vert
  • Funder: European Commission Project Code: 101102007
    Overall Budget: 44,441,600 EURFunder Contribution: 34,979,300 EUR

    HERA will identify and trade-off the concept of a regional aircraft, its key architectures, develop required aircraft-level technologies and integrate the required enablers in order to meet the -50% technology-based GHG emission set in SRIA for a Hybrid-Electric Regional Aircraft. The HERA aircraft, having a size of approximately of 50-100 seats, will operate in the regional and short-range air mobility by mid-2030 on typical distances of less than 500 km (inter-urban regional connections). The aircraft will be ready for future inter-modal and multi-modal mobility frameworks for sustainability. The HERA aircraft will include hybrid-electric propulsion based on batteries or fuel cells as energy sources supported by SAF or hydrogen burning for the thermal source, to reach up to 90% lower emissions while being fully compliant with ICAO noise rules. The HERA aircraft will be ready for entry into service by mid-2030, pursuing to the new certification rules, able to interact with new ground infrastructure, supporting new energy sources. This will make HERA aircraft ready for actual revenue service offering to operators and passengers sustainable, safe and fast connectivity mean at low GHG emissions HERA will quantitatively trade innovative aircraft architectures and configurations required to integrate several disruptive enabling technologies including high voltage MW scale electrical distribution, thermal management, new wing and fuselage as well as the new hybrid-electric propulsion and related new energy storage at low GHG. To support this unprecedented integration challenge, HERA will develop suitable processes, tools and simulation models supporting the new interactions, workshare in the value chain and interfaces among systems and components. HERA will also elaborate on the future demonstration strategy of a hybrid–electric regional aircraft in Phase 2 of Clean Aviation to support the high TRL demonstration required for an early impact for HERA solutions.

    more_vert
  • Funder: European Commission Project Code: 101091800
    Overall Budget: 5,683,670 EURFunder Contribution: 5,683,670 EUR

    Over the last years, production has been shifted from mass production to customization. The conventional production lines, traditionally focused on one product variant or one family of products do show their limitations to cope with the new needs. Moreover, unprecedented worldwide events, such as the recent pandemic crisis, indicated even more the need for flexible production systems that can rapidly switch production to a totally different one (e.g. automotive manufactures had to produce respirators, facemasks etc.). As a response, MASTERLY aims to develop flexible robotic solutions, constituting of modular grippers combined with state-of-the-art robotic technologies, such as mobile, high and low payload industrial and collaborative robots and smart cranes, enhanced with AI driven advanced control and perception capabilities that will allow them to act autonomously, handling a large variety of parts varying in size, shape and material, while being acceptable by both genders of workforce. The developments will focus around the following 5 pillars: 1) Innovative, efficient and low consumption systems for storage, retrieval, conveying and pick-and-place using a multi-disciplinary approach combining technologies 2) Robust handling devices and systems, with integrated –AI driven- advanced control 3) User-friendly interfaces for robot/machine control and programming 4) Interoperable S/W and H/W interfaces 5) Industrial Pilot Cases for work piece handling in full production line The technologies will be tested for flexibility, efficiency & user acceptance in three use cases from different productions sectors, aiming to demonstrate production line and cross sector applicability and adaptability: Elevators manufacturing, focusing on the assembly of electrical cabinets of lifts (KLEEMANN), Sportswear, focusing on warehouse logistics and packaging (DECATHLON) and Aeronautics production, focusing on production of large composite panels of aircraft wings (AERNNOVA).

    more_vert
  • Funder: European Commission Project Code: 945583
    Overall Budget: 235,320,992 EURFunder Contribution: 173,872,992 EUR

    Main objective for the Clean Sky 2 Large Passenger Aircraft Programme (LPA) is to further mature and validate key technologies such as advanced wings and empennages design, making use of hybrid laminar airflow wing developments, the integration of most advanced engines into the large passenger aicraft aircraft design as well as an all-new next generation fuselage cabin and cockpit-navigation. Dedicated demonstrators are dealing with Research on best opportunities to combine radical propulsion concepts, and the opportunities to use scalled flight testing for the maturation and validation of these concepts via scaled flight testing. Components of Hybrid electric propulsion concepts are developed and tested in a major ground based test rig. The LPA program is also contributing with a major workpackage to the E-Fan X program. The R&T activities in the LPA program is split in 21 so-called demonstrators. In the project period 2020 and 2021 a substantial number of hardware items ground and flight test items will be manufactured, assembled tested. For some large items like the Multifunctional Fuselage demonstrators or the HLFC wing ground demonstrator the detailed design and manufacturing of test items will be commenced. For the great majority of contributing technologies a Technology Readyness level (TRL) 3 or 4 will be accomplished or even exceeded. Based on data generated for each key technology contributing to the LPA program inputs will be provided to the CleanSky Technology Evaluator via the integration in agreed concept aircraft models in order to conduct the overall CS2 assessement. LPA is also contributing to conduct Eco Design Life Cycle assessements for selected LPA technologies.

    more_vert
  • Funder: European Commission Project Code: 807083
    Overall Budget: 210,184,000 EURFunder Contribution: 160,975,008 EUR

    The Airframe ITD aims at re-thinking and developing the technologies as building blocks and the “solution space” on the level of the entire or holistic aircraft: pushing aerodynamics across new frontiers, combining and integrating new materials and structural techniques – and integrating innovative new controls and propulsion architectures with the airframe; and optimizing this against the challenges of weight, cost, life-cycle impact and durability.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.