Powered by OpenAIRE graph
Found an issue? Give us feedback

Air Products (United Kingdom)

Air Products (United Kingdom)

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
17 Projects, page 1 of 4
  • Funder: UK Research and Innovation Project Code: EP/N024613/1
    Funder Contribution: 860,547 GBP

    The 2008 Climate Change Act sets a legally binding target of 80% CO2 emissions reductions by 2050. This target will require nearly complete decarbonisation of large and medium scale emitters. While the power sector has the option of shifting to low carbon systems (renewables and nuclear), for industrial emissions, which will account for 45% of global emissions, the solution has to be based on developing more efficient processes and a viable carbon capture and storage (CCS) infrastructure. The government recognises also that "there are some industrial processes which, by virtue of the chemical reactions required for production, will continue to emit CO2", ie CCS is the only option to tackle these emissions. In order for the UK industry to maintain its competitiveness and meet these stringent requirements new processes are needed which reduce the cost of carbon capture, typically more than 60% of the overall cost of CCS. Research challenge - The key challenges in carbon capture from industry lie in the wide range of conditions (temperature, pressure, composition) and scale of the processes encountered in industrial applications. For carbon capture from industrial sources the drivers and mechanisms to achieve emissions reductions will be very different from those of the power generation industry. It is important to consider that for example the food and drinks industry is striving to reduce the carbon footprint of the products we purchase due to pressures from consumers. The practical challenge and the real long term opportunity for R&D are solutions for medium to small scale sources. In developing this project we have collaborated with several industrial colleagues to identify a broad range case studies to be investigated. As an example of low CO2 concentration systems we have identified a medium sized industry: Lotte Chemicals in Redcar, manufacturer of PET products primarily for the packaging of food and drinks. The plant has gas fired generators that produce 3500 kg/hr of CO2 each at approximately 7%. The emissions from the generators are equivalent to 1/50th of a 500 MW gas fired power plant. The challenge is to intensify the efficiency of the carbon capture units by reducing cycle times and increasing the working capacity of the adsorbents. To tackle this challenge we will develop novel amine supporting porous carbons housed in a rotary wheel adsorber. To maximise the volume available for the adsorbent we will consider direct electrical heating, thus eliminating the need for heat transfer surfaces and introducing added flexibility in case steam is not available on site. As an example of high CO2 concentrations we will collaborate with Air Products. The CO2 capture process will be designed around the steam methane reformer used to generate hydrogen. The tail gas from this system contains 45% v/v CO2. The base case will be for a generator housed in a shipping container. By developing a corresponding carbon capture module this can lead to a system that can produce clean H2 from natural gas or shale gas, providing a flexible low carbon source of H2 or fuel for industrial applications. Rapid cycle adsorption based processes will be developed to drive down costs by arriving flexible systems with small footprints for a range of applications and that can lead to mass-production of modular units. We will carry out an ambitious programme of work that will address both materials and process development for carbon capture from industrial sources.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G037345/1
    Funder Contribution: 6,794,140 GBP

    The goal of the proposed EngD Centre is to produce research leaders to tackle the major national and international challenges over the next 15 years in implementing new power plant to generate electricity more efficiently using fossil energy with near zero emissions, involving the successful demonstration of CO2 capture, and also in reducing CO2 emissions generally from coal utilisation, including iron making. These leaders will be part of the new breed of engineers that will be thoroughly versed in cutting edge energy research and capable of operating in multi-disciplinary teams, covering a range of knowledge transfer, deployment and policy roles and with the skills to analyse the overall economic context of their projects and to be aware of the social and ethical implications. This proposal has involved wide consultation with the power generation sector which has indicated that the number of doctoral researchers required in the UK for the major developments in large-scale fossil energy power generation involving efficiency improvements and CO2 capture can be estimated conservatively as 150-200 over the next ten years. The Centre will play a vital role in meeting this demand by providing training in highly relevant technological areas to the companies concerned, as well as the broader portfolio of skills required for future research leaders. Further, Doosan Babcock, Alstom, E.ON, Rolls Royce, EDF, RWE, Scottish and Southern Energy (SSE), Welsh Power and Drax Power all support this bid and are willing to participate in the proposed Centre from 2009 onwards. Further, in terms of reducing CO2 emissions generally from coal utilisation, including iron making and smokeless fuel, this has drawn in other industrial partners, Corus and CPL. The innovative training programme involves a number of unique elements based around the social sciences and activities with China and is designed to ensure that the research engineers are not only thoroughly versed in cutting edge energy research but capable of operating in multi-disciplinary teams covering a range of knowledge transfer, deployment and policy roles and the ability to analyse the overall economic context of projects and to be aware of the social and ethical implications. The academic team draws upon the internationally leading fossil energy programme at Nottingham but also on colleagues at Birmingham and Loughborough for their complementary research in high temperature materials, plant life monitoring and energy economics. Given that virtually all of the research projects will benefit from using pilot-scale equipment in industry linked to the advanced analytical capabilities in the MEC and our overseas partners, together with the Group activities undertaken by the yearly cohorts, the training programme is considered to offer considerable added value over DTA project and CASE awards, as testified by the extremely high level of industrial interest in the proposed Centre across the power generation section, together with other industries involved in reducing CO2 emissions from coal utilisation.

    more_vert
  • Funder: European Commission Project Code: 621219
    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G037116/1
    Funder Contribution: 5,542,950 GBP

    The broad theme areas are Hydrogen and Fuel Cells, and the training will be interdisciplinary based on the skills and experience of the partners which range from Chemical Engineering (Prof Kendall), Chemistry (Prof Schroeder and Dr Anderson), Materials Science (Dr Book), Economics (Prof Green), Bioscience (Prof Macaskie), Applications (Dr Walker), Automotive and Aeronautics (Prof Thring) and Policy/Regulation (Prof Weyman-Jones). Training will also include industry supervision with the 23 companies which have signed up and overseas training with FZJ in Germany and University of Central Florida in the USA.There is an increasing demand for skilled staff in the field of Hydrogen and Fuel Cells, which at present has no dedicated UK centre for training, disseminating and co-ordinating with government bodies, industry and the public. This contrasts with the establishment of Forschungszentrum Julich (FZJ) in Germany, ECN in the Netherlands, and Risoe Laboratory in Denmark. Large companies such as Johnson Matthey, Rolls Royce and Air Products have substantial hydrogen and fuel cell projects, with hundreds of employed PhD level scientists and engineers. Recruitment has been a problem in recent years since only a handful of British universities carry out research in this area. But, most significantly, a large amount of private sector investment has now been injected, especially on the Alternative Investment Market (AIM) in London, such that support to SMEs such as Ceres Power, Intelligent Energy, Ceramic Fuel Cells Ltd, ITM, CMR and Voller has risen to several hundred million pounds, requiring hundreds of PhD recruits. Also, since the Joint Technology Initiative (JTI) has now been established in Europe, this 1bn Euro project will add to the very large research funding by organisations such as Siemens, GM, Renault, Ford, FZJ, EADS, CEA, Risoe, ECN etc. Several large centres for research and training exist in Europe, the USA and Japan and it is imperative that Britain increases its student output to keep pace.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/J016454/1
    Funder Contribution: 4,100,960 GBP

    The Hydrogen and Fuel Cells (HFC) SUPERGEN Hub seeks to address a number of key issues facing the hydrogen and fuel cells sector specifically: (i) to evaluate and demonstrate the role of hydrogen and fuel cell research in the UK energy landscape, and to link this to the wider landscape internationally, and (ii) to identify, study and exploit the impact of hydrogen and fuel cells in low carbon energy systems. Such systems will include the use of HFC technologies to manage intermittency with increased penetration of renewables, supporting the development of secure and affordable energy supplies for the future. Both low carbon transport (cars, buses, boat/ferries) and low carbon heating/power systems employing hydrogen and/or fuel cells have the potential to be important technologies in our future energy system, benefiting from their intrinsic high efficiency and ability to use a wide range of low to zero carbon fuel stocks. One major drive for the Hub is to contribute to technology development that will help the UK to meet its ambitious carbon emissions targets. We will also link the academic research base with industry, from companies with global reach through to SMEs and technology start-ups, to ensure effective and appropriate translation of research to support wealth and job creation for UK plc, and with local and national government to inform policy development. The Hub will champion the complete landscape in hydrogen and fuel cells research, both within the UK and internationally, via networks, knowledge exchange and stakeholder (including outreach) engagement, community building, and education, training and continuous professional development.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.