Powered by OpenAIRE graph
Found an issue? Give us feedback

UiT

The Arctic University of Norway
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
259 Projects, page 1 of 52
  • Funder: European Commission Project Code: 665633
    Overall Budget: 143,933 EURFunder Contribution: 143,933 EUR

    The aim of BLOBREC is to develop a blood-based test for the diagnosis of breast cancer. The test is based on results from gene expression analyses in a hospital based nested case-control study in the Norwegian Women and Cancer postgenome cohort study. The controls are healthy population controls from the same cohort. The innovative potential of a gene expression test is the independency from other test for breast cancer like imaging technologies (mammograms, ultrasound, MR) and pathological diagnosis. As such it could be used by itself or in combination with these other technologies. The idea has been considered by the International Search Authorities to be novel and inventive and thus, considered to be patentable. Further analyses should be run to improve the predictive values of the test together with an external validation. The scenarios of use will be discussed. Based on this work comprehensive documentation should be available for commercial partners. Through collaboration with a technology transfer institution the potential approaches to commercial companies should be explored before any negociations. The idea could have important social and clinical implications through improved diagnosis of breast cancer given the increasing incidence of this disease in many countries worldwide.

    more_vert
  • Funder: European Commission Project Code: 894296
    Overall Budget: 214,159 EURFunder Contribution: 214,159 EUR

    The immensity of the oceans makes it difficult to monitor them at a spatio-temporal scale that is relevant for resolving ecological processes and responses to decades of pressure from multiple anthropological stressors. With IsoMod, I aim to map the biogeochemical tracers (stable isotope (SI) composition) at the base of the food web to inform three key measures of marine ecosystem processes that might be affected by these stressors: productivity, food web structure and animal migration pathways. The isoscapes will be developed at the scale of the North Atlantic Ocean and will be based on Calanus spp. carbon and nitrogen SI values, δ13C and δ15N. Lipid rich zooplankton organisms such as C. finmarchicus fuel a large part of the higher trophic level in the North Atlantic, including many species of fish, birds and mammals. I will use a recently developed spatial statistic approach where high resolution observational data (e.g., satellite data) are applied as predictors of SI variability, and apply these models to produce isoscapes with a full coverage of the study area. The application of these isoscapes will be showcased in two case studies. The first will test the role of changes in Atlantic puffin (Fratercula arctica) winter diet in key life-history parameters (e.g., body condition, survival rate). Specifically, the isoscapes will be used to provide the trophic baseline needed to investigate changes in puffin trophic position associated with changes in diet. The second case study will use prey SI to improve forecast of Northeast Atlantic mackerel (Scomber scombrus) summer distribution. Variation in SI values can be linked to variation in secondary productivity and this will be used to identify best foraging conditions for mackerel ahead of their migration to the summer feeding grounds. This information will be investigated as a driver of mackerel summer distribution and their recent shift in distribution.

    more_vert
  • Funder: European Commission Project Code: 749666
    Overall Budget: 208,400 EURFunder Contribution: 208,400 EUR

    Research in biology is both empowered and limited by the fluorescence imaging technology, which has witnessed a huge leap in resolution limits through super-resolved optical microscopy or also referred as optical nanoscopy. Over the last few decades, numerous optical nanoscopy techniques have been reported for either spatial or temporal resolution enhancement. Nevertheless, the present state-of-the-art of optical nanoscopy lacks to provide high optical resolution (50 nm or better) at high temporal resolution (~1 Hz) over large field of view (> 500 X 500 μm2) in live-cell friendly imaging conditions, such as without special buffer/fluorophores and with minimum photo-toxicity. In this proposal, the aim is to provide ~50 nm optical resolution at significantly small temporal scales (~ seconds) in photochemical environment which is physiologically conducive for in-vivo bio-imaging applications. This is achieved by incorporating complementary knowledge and intra-disciplinary skills on the computational nanoscopy (of the experienced researcher, ER) and chip-based optical nanoscopy technique (developed by the hosting PI). The aim is to apply Multiple Signal Classification algorithm (MUSICAL), a computational nanoscopy algorithm developed by the experienced researcher with the fluctuating illumination provided by waveguide chip-based optical nanoscopy developed at the host university, namely Universite it Tromsø, under the ERC funded project (Nanoscopy, PI: Ahuliwalia). The technique shall be used to image and understand endocytosis transport-highway of phages virus in liver endothelial scavenger cells.

    more_vert
  • Funder: European Commission Project Code: 336716
    more_vert
  • Funder: European Commission Project Code: 101146180
    Funder Contribution: 307,940 EUR

    Due to its multidrug resistance (MDR), Enterococcus faecium (Efm) poses a challenge to the healthcare system and renders most standard antibiotics useless. Bacteriophage (phage) therapy has resurfaced as a treatment strategy for bacterial infections due to increasing antibiotic resistance. Its advantages include specificity, low side effects and production costs, especially when used in combination with standard-of-care antibiotics. Phage therapy has been successful in compassionate use, but its wider implementation is hindered by a lack of knowledge on which antibiotics phages synergize and the mechanisms behind remain elusive. Our project is unique in that it aims to enable the use of conventional antibiotics in MDR Efm through phages. We want to explore which antibiotic classes phages synergize with, which survival strategies Efm uses against phages, and how host factors influence the ability of the antibiotic-phage combination to kill Efm. First, we will investigate phages' interaction with different antibiotic classes against Efm. We will explore the dynamics of phage-antibiotic combinations and whether they are additive, synergistic, or antagonistic. Second, potential phage survival strategies of Efm will be investigated. Additionally, membrane vesicles will be investigated as a potential survival strategy against phages, and their ability to act as a decoy and protect the bacterium from phages will be studied. Third, we will investigate the impact of host factors on the phage-antibiotic killing of Efm, to see whether they can enhance or suppress the phage-antibiotic killing. This approach will provide a deeper understanding of the phages-antibiotic interaction against MDR Efm strains, as well as potential survival systems of Efm which may also shed light on possible mitigation strategies. Overall, this approach has the potential to enable the use of standard-of-care drugs against MDR bacterial infections in general.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.