Powered by OpenAIRE graph
Found an issue? Give us feedback

University of Manchester

University of Manchester

760 Projects, page 1 of 152
  • Funder: European Commission Project Code: 624969
    more_vert
  • Funder: European Commission Project Code: 213968
    more_vert
  • Funder: European Commission Project Code: 200835
    more_vert
  • Funder: European Commission Project Code: 212111
    more_vert
  • Funder: European Commission Project Code: 892595
    Overall Budget: 212,934 EURFunder Contribution: 212,934 EUR

    We propose to design a new insert with a sample-holder and investigate quantum aspects of flow (gas) conductance as a function of temperature (T) down to 4K by exploiting de Broglie wavelength for neutral helium (He) atoms through an atomically-flat rectangular graphene nanochannel in a molecular flow regime. By confining the vertical length of the transport channel and tuning the associated de Broglie wavelength (with T), the realization of the quantum limited conductance for He gas flow, similar to the observed quantum signatures of conductance for electrons, seems to be truly within the experimental reach. The behaviour of the wall switches over to more rigid (lowering atomic vibrations) from flexible one at room T which not only enhances the specular reflection but also the phase coherence of the associated de Broglie wavelength. We will investigate the transport properties using layered materials from transition metal dichalcogenides (TMDs) family to induce ballistic transport from the diffusive transport regime at room T via Laser-irradiation and chemical roots which will heal the defects in TMDs at atomic scale. Our investigations will help in search of more materials to have the ballistic transport around room T. Our focus will not only be on the enhanced flow due to quantum effects but also the understanding from fundamental physics point of view as well as exploring in broader perspective. The strategy of the project is to design a setup for low-T, making state-of-the-art devices, investigate the quantum signatures of conductance of nanoscale channels and address various important issues. Completion of the multidisciplinary project will open up a new era where various novel intriguing physics need to be explored further, understanding of quantum gas transport will boost many biomedical and industrial applications, next generation devices using gas sensors and properties of thermal transport exploited to extract heat will be tuned with enhanced performance.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.