Powered by OpenAIRE graph
Found an issue? Give us feedback

IISc

Indian Institute of Science Bangalore
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
36 Projects, page 1 of 8
  • Funder: European Commission Project Code: 233484
    more_vert
  • Funder: UK Research and Innovation Project Code: AH/L008483/1
    Funder Contribution: 35,300 GBP

    This research will create a truly innovative, international research network that will stretch far and wide in the area of "Cultures of Creativity and Innovation in Design". The international research network coordinating body comprises Professors Paul Rodgers and Paul Jones from Northumbria University, Professor Amaresh Chakrabarti, a world-leading researcher in Design Creativity, from the Centre for Product Design and Manufacturing at the Indian Institute of Science, Bangalore and Professor Lorenzo Imbesi, an internationally-acclaimed researcher in Design Culture, from the School of Industrial Design at Carleton University, Canada. The importance of creativity in the cultural, creative and other industries and the significant contributions that creativity adds to a nation's overall GDP and the subsequent health and wellbeing of its people cannot be overstated. In Europe, the value of the cultural and creative industries is estimated at well over 700 billion Euros each year, twice that of Europe's car manufacturing industry. The value of creativity and innovation, to any nation, is therefore huge. Creativity and innovation adds real value, which enables a number of benefits such as economic growth and social wellbeing. In many societies creativity epitomises success, excitement and value. Whether driven by individuals, companies, enterprises or regions creativity and innovation establishes immediate empathy, and conveys an image of dynamism. Creativity is thus a positive word in societies constantly aspiring to innovation and progress. In short, creativity in all of its manifestations enriches society. This network seeks to gain an understanding of this dynamic ecology that creativity and innovation bring to society. Creativity is a vital ingredient in the production of products, services and systems, both in the cultural industries and across the economy as a whole. Yet despite its importance and the ubiquitous use of creativity as a term there are issues regarding its definitional clarity. A better understanding and articulation of creativity as a concept and a process would support enhanced future innovation. Socio-cultural approaches to creativity explain that creative ideas or products do not happen inside people's heads, but in the interaction between a person's thoughts and a socio-cultural context. It is acknowledged that creativity cannot be taught, but that it can be cultivated and this has significant implications for a nation's design and innovation culture. It is known that creativity flourishes in congenial environments and in creative climates. This research will examine how creativity is valued, exploited, and facilitated across different national and cultural settings as all can have a major impact on a nation's creative potential. The key aim of this network is to investigate attitudes about creativity and how it is best cultivated and exploited across three different geographical locations (UK, India, and Canada), different environments, and cultures from both an individual designer's perspective and design groups' perspectives. The network seeks to investigate cultures of creativity and innovation in design and question its nature. For instance, can creativity be adequately conceptualised in a design context? What role do cultural organisations and national bodies play in harnessing creativity? Where do the "edges" lie between creativity and innovation? Do richer environments and approaches for facilitating creativity exist? What design skills, knowledge, and expertise are required for creativity? Moreover, what are the key drivers that motivate the creativity and innovation of designers and other stakeholders? Are they economical, cultural, social, or political? This research network will host 3 workshops, each one facilitating inquiry amongst invited design practitioners, researchers, educators and other stakeholders involved in design practice.

    more_vert
  • Funder: National Science Foundation Project Code: 9300751
    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N014642/1
    Funder Contribution: 2,020,880 GBP

    In the diagnosis and treatment of disease, clinicians base their decisions on understanding of the many factors that contribute to medical conditions, together with the particular circumstances of each patient. This is a "modelling" process, in which the patient's data are matched with an existing conceptual framework to guide selection of a treatment strategy based on experience. Now, after a long gestation, the world of in silico medicine is bringing sophisticated mathematics and computer simulation to this fundamental aspect of healthcare, adding to - and perhaps ultimately replacing - less structured approaches to disease representation. The in silico specialisation is now maturing into a separate engineering discipline, and is establishing sophisticated mathematical frameworks, both to describe the structures and interactions of the human body itself, and to solve the complex equations that represent the evolution of any particular biological process. So far the discipline has established excellent applications, but it has been slower to succeed in the more complex area of soft tissue behaviour, particularly across wide ranges of length scales (subcellular to organ). This EPSRC SoftMech initiative proposes to accelerate the development of multiscale soft-tissue modelling by constructing a generic mathematical multiscale framework. This will be a truly innovative step, as it will provide a common language with which all relevant materials, interactions and evolutions can be portrayed, and it will be designed from a standardised viewpoint to integrate with the totality of the work of the in silico community as a whole. In particular, it will integrate with the EPSRC MultiSim multiscale musculoskeletal simulation framework being developed by SoftMech partner Insigneo, and it will be validated in the two highest-mortality clinical areas of cardiac disease and cancer. The mathematics we will develop will have a vocabulary that is both rich and extensible, meaning that we will equip it for the majority of the known representations required but design it with an open architecture allowing others to contribute additional formulations as the need arises. It will already include novel constructions developed during the SoftMech project itself, and we will provide many detailed examples of usage drawn from our twin validation domains. The project will be seriously collaborative as we establish a strong network of interested parties across the UK. The key elements of the planned scientific advances relate to the feedback loop of the structural adaptations that cells make in response to mechanical and chemical stimuli. A major challenge is the current lack of models that operate across multiple length scales, and it is here that we will focus our developmental activities. Over recent years we have developed mathematical descriptions of the relevant mechanical properties of soft tissues (arteries, myocardium, cancer cells), and we have access to new experimental and statistical techniques (such as atomic force microscopy, MRI, DT-MRI and model selection), meaning that the resulting tools will bring much-need facilities and will be applicable across problems, including wound healing and cancer cell proliferation. The many detailed outputs of the work include, most importantly, the new mathematical framework, which will immediately enable all researchers to participate in fresh modelling activities. Beyond this our new methods of representation will simplify and extend the range of targets that can be modelled and, significantly, we will be devoting major effort to developing complex usage examples across cancer and cardiac domains. The tools will be ready for incorporation in commercial products, and our industrial partners plan extensions to their current systems. The practical results of improved modelling will be a better understanding of how our bodies work, leading to new therapies for cancer and cardiac disease.

    more_vert
  • Funder: European Commission Project Code: 287820
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
1 Organizations, page 1 of 1

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.