Powered by OpenAIRE graph
Found an issue? Give us feedback

Mitsubishi Corporation (Japan)

Mitsubishi Corporation (Japan)

6 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/K023047/1
    Funder Contribution: 97,511 GBP

    Structural health monitoring (SHM) of civil engineering structures (buildings, bridges, wind turbines, dams, masts etc) aims to assess their structural integrity and performance and to detect potential damage induced by i) daily service loads, ii) exposure to environmental effects over the years and/or iii) extreme/accidental loads, either natural (e.g. floods, hurricanes and earthquakes) or man-made (e.g. explosions and traffic accidents). As identified in the UK's 2011 National Infrastructure Plan, investing in civil infrastructure is a key priority to achieve Nation-wide financial growth and prosperity, a statement which applies globally. Developing new SHM tools to facilitate better informed decisions by civil infrastructure owners, local authorities, National agencies, and Governments on taking refurbishment, retrofitting, upgrade, or replacement actions for existing infrastructure is of utmost importance to appropriately channel investments in civil infrastructure. In this context, the proposed research considers concepts from the emerging field of compressive sensing (CS) to develop novel structural condition assessment and damage detection algorithms for vibration-based SHM of civil engineering structures. These SHM algorithms support the use of arrays of sensors incorporating CS-based data acquisition hardware equipment which has not been considered before in wireless SHM of civil engineering structures. Such equipment is not commercially available yet, but the few existing prototypes showcase that it yields simpler, more affordable, and less obtrusive sensors. Therefore, this project paves the way for transformative technological advancements towards a new breed of wireless sensors enabling i) cost-effective routine/periodic SHM for ageing infrastructure, and ii) rapid integrity assessment of large number of structures in the aftermath of natural and man-made disasters.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N010078/1
    Funder Contribution: 266,875 GBP

    A design tool will be developed that highlights potential patent infringement of an emerging design will help to steer that design towards a novel solution as well as avoid costly litigation. We will focus on mechanical engineering designs where the novel inventive step relies heavily upon how functions and key geometrical features of the design interact. We describe these types of application as where function-geometry inventive principles, and hence related patent images, play an important role. Current patent retrieval systems only employ text-based search methods and there is a need for image-based semantic search approaches to be developed for designers to use. Functional representations, which are typically schematic design diagrams showing the relationship of functions and effects between elements of a design, are a form of semantics and are used by some commercial innovation systems but not for patent comparison. In addition, functional representations have not been extensively applied to designs that rely on novel geometric features. Existing functional representations will be evaluated to assess the extent they can be used as a graphical design description for use in patent search. Ontology and semantic descriptors will be developed for use with the defined 'function-geometry' inventive principles, common in mechanical engineering design, in order to compare an emerging design with relevant patents. A database will be created of product design and machine design patents in the target manufacturing field. A CAD system will be adapted to store internal model annotations of the emerging design that express the design intent and also develop a description of the function-geometry interaction, aided by the ontology and semantics developed for this purpose. The patent database will be searched for comparison with the emerging design based primarily on text and symbol annotations of the original patent images plus, where relevant, a functional representation of the design depicted in the patent. The patent infringement due to particular design features, statistically quantified, will be depicted in a visualisation superimposed on the emerging design. In this way, the designer will be supported to create innovative solutions that avoid patent infringement.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L015943/1
    Funder Contribution: 5,286,380 GBP

    A new generation of gas turbine engines is required to meet future environmental and commercial targets. This requirement applies to gas turbines used for a wide range of applications including aircraft propulsion and power generation. To date, many performance improvements have been made through improved understanding of the complex aerodynamic processes occurring within a gas turbine engine. However, meeting future challenges and targets will require the adoption of a multi-disciplinary and integrated design methodology. In such a methodology, the complex aerodynamic processes, and the design of individual components, can not be considered in isolation. Instead, the design process must include (i) the strong links/interaction between the aerodynamics and other aerothermal processes (e.g. heat transfer, acoustics, fuel break up) and (ii) the interaction between the different gas turbine components. To facilitate this approach, an EPSRC Centre of Doctoral Training in Gas Turbine Aerodynamics is proposed involving Cambridge, Loughborough and Oxford Universities. These three universities have been specifically chosen because of their track record of research excellence in the aerodynamics of the three major components of a gas turbine (compressor, combustor and turbine). In addition to their aerodynamics expertise these universities also undertake world class research in the fields with which aerodynamics interacts (e.g. heat transfer, acoustics, two phase flows). The proposed CDT is fully aligned with the strategies of all three institutions to promote long term industrial engagement and collaboration, as strongly endorsed in the institutional letters of support. Students will spend the first year of their training studying for an MRes in Gas Turbine Aerodynamics. The intention is for this course to become the world's premiere gas turbine course, training the next generation of research and industry leaders. All three institutions, and the industry partners of the CDT, will contribute to the teaching of this course to ensure that the students aquire the broad range of knowledge required to meet future technical challenges. This contrasts to the current approach whereby students typically study a narrow range of methods and techniques applicable to a specific component challenge. The approach proposed here will enable the students to be exposed to a wide range of theoretical, experimental and numerical techniques applicable to the design of different components of a gas turbine engine, with emphasis being placed on a more integrated and multi-disciplinary design philosophy. Time spent at the different institutions will also expose the students to the cutting edge research being undertaken in these different areas. In the following three years, the students will undertake high impact and innovative research projects inspired by industrial collaboration. To successfully innovate and translate innovation into a product requires close engagement between academia and industry. The CDT has assembled a group of companies which span the entire gas turbine products range including Rolls-Royce in gas turbines for aerospace, industrial and marine applications, Mitsubishi Heavy Industries in large gas turbines for power generation and Siemens UK for small gas turbines for power and pumping. In addition, technologies developed for use in gas turbines are now being actively developed for a range of other purposes. An example of this is Dyson who has invested significant research funding into the development high efficiency axial compressors for use in domestic products. The CDT will be open to such companies who can benefit directly both from the facilities available, the research undertaken within the individual projects and the design methods developed. In the longer term, these companies will also benefit from the potential employees and industry leaders that the CDT will produce.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L017482/1
    Funder Contribution: 198,466 GBP

    Electrical discharge machining (EDM) is an excellent process of realising complex features in tough materials. EDM makes use of repeated electrical discharges to remove material from a workpiece. Each discharge constitutes a plasma channel which results in removal of a small amount of material from both the EDM machine's electrode ('the tool') and the work piece. Machine parameters and spark conditions are optimised such that under typical conditions more material is removed from the work piece when compared to the tool per discharge. When the plasma arc strikes a localised region is rapidly heated and liberated from the bulk. This 'debris' is then normally evacuated from the spark gap by the so called flushing mechanism. The spark gap is in an incredibly tempestuous place and hence very difficult to understand. However, knowledge of this behaviour is crucial to advancing our understanding of ED techniques for industrial applications. It has been shown that under the correct physical conditions in the spark gap the debris created by these discharges can be used to apply a coating and build low aspect ratio surface structures. This presents an interesting opportunity to high value manufacturers who are often tasked with machining precision features and then applying precision coatings or, perhaps, repairing worn regions in high value components. However, the physics of this process is not yet fully understood and there remains a requirement to advance this technology significantly from fundamental principles. This project will explore the technology from a new, multidisciplinary perspective which will incorporate both experimental and modelling activities. The investigators will present a solid understanding of the debris dynamics electrical discharge coating techniques to the community and will use this new knowledge to create complex multi-layer coatings which will have applications in the aerospace, biomedical and tool making industries. Companies operating in these industries thrive on the technological advantage their products possess over competitors. For example all of these products require advanced tribological properties amongst other complex surface characteristics. There is an array of surface modification techniques available to manufactures such as laser cladding, cold/plasma spray, PVD amongst others which have developed rapidly in the last 20 years. However, none of these have been directly integrated into a process which can also remove material. The rapid adoption of all of these coating techniques has been borne out of a solid understanding of the process mechanics, materials science and optimisation for application. In all of the high value applications for these coating techniques surface integrity is critical since failures which occur as a result of corrosion, fatigue or high temperature effects emanate from the surface or near surface. Enhancing surface integrity is the core rationale for surface treatment although coatings are also often applied for aesthetic purposes also. EDM itself has developed significantly in recent years with modern machine makers claiming to have developed processes capable of the so called 'near zero' recast layer. This is in response to the extensive studies which have been undertaken on the surface damage that results from EDM and is known to induce deleterious tensile stresses. However, no solid solution to this has been developed which means the confidence in EDM surface layers is currently low. However, the application of consolidated coatings may be able to tackle this problem and will be investigated in this project. The ability to remove material and apply a coating within the same process presents significant advantages. Therefore the use of ED coating methods has great potential to enhance high value manufacturing in terms of enhanced product performance but also through process efficiency savings.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S023003/1
    Funder Contribution: 7,719,540 GBP

    The UK has an international reputation for excellence in the aero-propulsion and power generation industry and is at the forefront of research into the underpinning aero-thermal science and technology. Through the current CDT in Gas Turbine Aerodynamics, the UK has also established itself as the global leader in graduate training in the field. But this sector is entering a period of accelerated change and market disruption. In aerospace, the continuing drive to reduce emissions is necessitating major architecture changes in jet engines as well as entirely new electrified concepts with integrated engine-airframe designs. In power generation, fast response and flexible operation gas turbines are required to support the increasing capacity of renewables. In addition, the traditional physical (experimental tests) and digital (computational simulation) worlds are merging with the advent of rapid multi-disciplinary design tools and additive manufacturing. The common thread in these challenges is the rapid increase in the rate of generation of data and the requirement for engineers to convert this information into innovative design changes. To maintain its leadership position, the UK must train a new generation of engineers with the skills needed to innovate in this data-rich environment. The new CDT in Future Propulsion and Power will train engineers with the Data, Learning and Design, and Systems Integration skills required by aero-thermal engineers of the future. Engineers will need to handle an unprecedented volume of Data from the latest multi-disciplinary simulations, experimental tests, or from real engines in the field. From this, engineers will need to distil Learning by a critical evaluation of the data, using AI and data science as appropriate, against hypotheses developed with reference to the underpinning aero-thermal science. The critical output from this Learning is improved Design, be that of a an individual component or process, or an Integrated System (e.g. electrically driven propulsor, urban air taxi, fast-response power generation). This set of coupled, aero-thermal focussed skills will be provided by the new CDT in Future Propulsion and Power. The Centre is a collaboration between three universities and four industry partners, each with complimentary expertise and skills, but with a shared vision to deliver a training experience that sets the global benchmark for Propulsion and Power education. The laboratories of the partner institutions have a track record of research leadership in turbomachinery aerodynamics (Cambridge), heat transfer (Oxford) and combustor aerodynamics (Loughborough). The new Master's course will use expertise from the three universities to train students in the underpinning aero-thermal science, in the experimental and computational data generation and critical evaluation, and in the process of aerodynamic design. Data Science training will be provided by Workshops delivered by the Alan Turing Institute and by researchers using advanced data analytics in the Centre's universities. The Industry Partners (Rolls-Royce, Siemens, Mitsubishi Heavy Industries and Dyson) are committed to defining, delivering and supporting the Centre (they will fund a minimum of 35 studentships). As well as providing a pathway for research projects to contribute to real products, the sponsoring companies also deliver bespoke industry courses to the students of the CDT; they provide a manufacturing, operation and Systems Integration context that only industry can offer. The Industry Partners will include data analytics (from R2 Data Labs - Rolls-Royce, and MindSphere/IoT - Siemens) in their industry courses. These companies, and others in related sectors in the UK, ensure a demand for the graduates of the new CDT with their unique, aerodynamics-focussed, Data, Learning and Design skill set.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.