Powered by OpenAIRE graph
Found an issue? Give us feedback

INNATERA NANOSYSTEMS BV

Country: Netherlands

INNATERA NANOSYSTEMS BV

8 Projects, page 1 of 2
  • Funder: European Commission Project Code: 101097560
    Overall Budget: 14,974,700 EURFunder Contribution: 4,497,180 EUR

    CLEVER proposes a series of innovations in the area of hardware accelerators, design stack, and middleware software that revolutionize the ability of edge computing platforms to operate federatedly, leveraging sparse resources that are coordinated to create a powerful swarm of resources. CLEVER technologies will support the deep edge computing paradigm, moving computing services closer to the end user or the source of the data to reduce power consumption, reduce capacity requirements, and latency for mission critical applications. Furthermore, CLEVER will overcome traditional limitations of edge computing in terms of limited resource availability by providing an effective framework for seamless use of federated resources in the edge-cloud continuum. CLEVER will demonstrate processing solutions for AI at the edge through four use cases: (1) digital twin for in-factory optimization, (2) smart agriculture for high yield eco-farms, (3) fully automated material deployment, and (4) augmented reality for shopping sites. Through the achievement of its goals, the CLEVER project will help to position Europe at the forefront of the intelligent edge computing field, enabling growth across many sectors (manufacturing, agriculture, smart environments, augmented reality, and others). By lowering the barriers for utilising edge computing for artificial intelligence applications, CLEVER will open the door for European Industries and SMEs to leverage state of the art technologies, driving their development and growth as leaders in their sectors.

    more_vert
  • Funder: European Commission Project Code: 876019
    Overall Budget: 41,399,600 EURFunder Contribution: 11,869,500 EUR

    ADACORSA targets to strengthen the European drone industry and increase public and regulatory acceptance of BVLOS (beyond visual line-of-sight) drones, by demonstrating technologies for safe, reliable and secure drone operation in all situations and flight phases. The project will drive research and development of components and systems for sensing, telecommunication and data processing along the electronics value-chain. Additionally, drone lead smart industries with high visibility and place for improvement will be developed which will pave the way for a higher public / industry acceptance of the drone technologies. In particular, ADACORSA will deliver: a) On the component level, functionally redundant and fail-operational radar and LiDAR sensors as well as 3D cameras. In order to reduce risk, time and costs, the project aims to adapt technologies from the automotive sector to the drone market for these components. b) On the system level, hardware and software for reliable sensor fusion and data analytics as well as technologies for secure and reliable drone communication using multipath TCP and registration and identification by developing platforms based on eUICCs/eSIM. c) On an architecture level, fail-operational drone control and investigation a pre-operational Flight Information Management System (FIMS) the integration with CoTS components for Unmanned Air Vehicle Traffic Management System (UTM). Within the project, 35 physical as well as virtual demonstrators of BLVOS, long-range drone flight shall pave the way toward certifiable systems for future integration of drone operations. ADACORSA's innovations will leverage the expertise of a very strong consortium, comprising world renowned industrial (OEMs, Tier-1, Tier-2 and technology providers) and research partners along the complete aviation, semiconductor and also automotive value chains, providing Europe with a competitive edge in a growing drone and drone technologies market.

    more_vert
  • Funder: European Commission Project Code: 190123060
    Overall Budget: 3,563,250 EURFunder Contribution: 2,494,280 EUR

    Over the last 5 years, the number of devices equipped with sensors has grown exponentially reaching 4 billion per year. In battery-powered devices such as phones, smartwatches, wireless earphones, & video doorbells, energy-efficient processing of the complex, continuous data coming out of multiple sensors is a critical problem. Innatera is a trailblazing semiconductor spin-off of the TU Delft & is bringing to the market neural processors. Our Spiking Neural Processor (SNP) is inspired by the way neurons function in our brain using a neural network with an inherent notion of time. At the sensor edge, SNP can deliver always-on pattern recognition functionalities in power & latency-sensitive applications via an innovative programmable architecture. It enables application-specific customers to implement immediately ready-to-use high-performance pattern recognition. SNP delivers market-leading differentiation with faster time-to-market & reduced development effort.

    more_vert
  • Funder: European Commission Project Code: 101007326
    Overall Budget: 41,430,000 EURFunder Contribution: 11,786,400 EUR

    The European Green Deal defines 4 key elements for a sustainable mobility and automotive industry, namely: climate neutrality, zero pollution Europe, sustainable transport, and the transition to a circular economy. Digital technologies are a significant enabler for attaining the sustainability goals in mobility and transportation. The EC is taking initiatives to ensure that digital technologies such as AI, 5G, IoT and cloud/edge computing can accelerate the transition of the automotive industry to electrical, autonomous, connected, and shared vehicles. The current COVID-19 situation accelerates this trend. The AI4CSM project will develop advanced electronic components and systems (ECS) and architectures for future mass-market ECAS vehicles. This fuels the digital transformation in the automotive sector to support the mobility trends and accelerate the transition towards a sustainable green and digital economy. Having assembled some of Europe’s best partners from industry, research and academia, AI4CSM will deliver key innovations in technical areas including: sensor fusion and perception platforms; efficient propulsion and energy modules; advanced connectivity for cooperative mobility applications; vehicle/edge/cloud computing integration concepts; new digital platforms for efficient and federated computing; and intelligent components based on trustworthy AI techniques and methods. ECAS vehicles enabled by embedded intelligence and functional integration for future mobility, becomes the pivotal factor for the automotive sector to address the Green Deal principles. AI4CSM consists of 8 collaborative R&D clusters, gathering 41 partners from 10 countries. AI4CSM will reinforce user acceptance and affordability by convenience and services for the major transition to a diverse mobility. AI4CSM addresses the increasing demand of mobility, supporting future traffic concepts and strengthen the European automotive manufacturing base as a global industry leader.

    more_vert
  • Funder: European Commission Project Code: 101096658
    Overall Budget: 33,402,600 EURFunder Contribution: 10,509,800 EUR

    Global environmental issues, social inequality and geopolitical changes will pose numerous problems for our society in the future. To face these new challenges and deal with them, there is a need to understand and appropriately utilize new digital technologies such as artificial intelligence (AI), the Internet of Things (IoT), robotics and biotechnologies. A-IQ Ready proposes cutting-edge quantum sensing, edge continuum orchestration of AI and distributed collaborative intelligence technologies to implement the vision of intelligent and autonomous ECS for the digital age. Quantum magnetic flux and gyro sensors enable highest sensitivity and accuracy without any need for calibration, offer unmatched properties when used in combination with a magnetic field map. Such a localization system will enhance the timing and accuracy of the autonomous agents and will reduce false alarms or misinformation by means of AI and multi-agent system concepts. As a priority, the communication guidance and decision making of groups of agents need to be based on cutting-edge technologies. Edge continuum orchestration of AI will allow decentralizing the development of applications, while ensuring an optimal use of the available resources. Combined with the quantum sensors, the edge continuum will be equipped with innovative, multi-physical capabilities to sense the environment, generating “slim” but accurate measurements. Distributed intelligence will enable emergent behavior and massive collaboration of multiple agents towards a common goal. By exploring the synergies of these cutting-edge technologies through civil safety and security, digital health, smart logistics for supply chains and propulsion use cases, A-IQ Ready will provide the basis for the digital society in Europe based on values, moving towards the ideal of Society 5.0.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.