Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Other literature type . Article . 2022 . Peer-reviewed
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Detailed Characterization of Solid and Volatile Particle Emissions of Two Euro 6 Diesel Vehicles

Authors: Barouch Giechaskiel; Anastasios Melas; Tero Lähde;

Detailed Characterization of Solid and Volatile Particle Emissions of Two Euro 6 Diesel Vehicles

Abstract

The solid particle number emissions of Diesel vehicles are very low due to the particulate filters as exhaust aftertreatment devices. However, periodically, the trapped particles are oxidized (i.e., active regeneration) in order to keep the backpressure at low levels. The solid particle number emissions during regenerations are only partly covered by the regulations. Many studies have examined the emissions during regenerations, but their contribution to the overall emissions has not been addressed adequately. Furthermore, the number concentration of volatile particles, which is not included in the regulations, can be many of orders of magnitude higher. In this study, the particulate emissions of two light-duty Euro 6 vehicles were measured simultaneously at the tailpipe and the dilution tunnel. The results showed that the weighted (i.e., considering the emissions during regeneration) solid particle number emissions remained well below the applicable limit of 6 × 1011 #/km (solid particles > 23 nm). This was true even when considering solid sub-23 nm particles. However, the weighted volatile particle number emissions were many orders of magnitude higher, reaching up to 3 × 1013 #/km. The results also confirmed the equivalency of the solid particle number results between tailpipe and dilution tunnel locations. This was not the case for the volatile particles which were strongly affected by desorption phenomena. The high number of volatiles during regenerations even interfered with the 10 nm solid particle number measurements at the dilution tunnel, even though a catalytic stripper equipped instrument was also used in the dilution tunnel.

Keywords

Fluid Flow and Transfer Processes, Technology, artefacts, catalytic stripper, volatile particles, QH301-705.5, T, Physics, QC1-999, Process Chemistry and Technology, General Engineering, regeneration; catalytic stripper; sub-23 nm; PMP; artefacts; volatile particles; solid particle emissions, Engineering (General). Civil engineering (General), PMP, Computer Science Applications, Chemistry, regeneration, sub-23 nm, General Materials Science, TA1-2040, Biology (General), QD1-999, Instrumentation

61 references, page 1 of 7

1. Chen, Y.; Sun, R.; Borken-Kleefeld, J. On-Road NO x and Smoke Emissions of Diesel Light Commercial Vehicles-Combining Remote Sensing Measurements from across Europe. Environ. Sci. Technol. 2020, 54, 11744-11752. [CrossRef] [PubMed]

2. Harris, S.J.; Maricq, M.M. Signature Size Distributions for Diesel and Gasoline Engine Exhaust Particulate Matter. J. Aerosol Sci. 2001, 32, 749-764. [CrossRef]

3. Giechaskiel, B.; Mamakos, A.; Andersson, J.; Dilara, P.; Martini, G.; Schindler, W.; Bergmann, A. Measurement of Automotive Nonvolatile Particle Number Emissions within the European Legislative Framework: A Review. Aerosol Sci. Technol. 2012, 46, 719-749. [CrossRef]

4. Lähde, T.; Rönkkö, T.; Virtanen, A.; Solla, A.; Kytö, M.; Söderström, C.; Keskinen, J. Dependence between Nonvolatile Nucleation Mode Particle and Soot Number Concentrations in an EGR Equipped Heavy-Duty Diesel Engine Exhaust. Environ. Sci. Technol. 2010, 44, 3175-3180. [CrossRef] [PubMed] [OpenAIRE]

5. Filippo, A.D.; Maricq, M.M. Diesel Nucleation Mode Particles: Semivolatile or Solid? Environ. Sci. Technol. 2008, 42, 7957-7962. [CrossRef]

6. Giechaskiel, B.; Melas, A.; Martini, G.; Dilara, P. Overview of Vehicle Exhaust Particle Number Regulations. Processes 2021, 9, 2216. [CrossRef]

7. Suarez-Bertoa, R.; Astorga, C. Impact of Cold Temperature on Euro 6 Passenger Car Emissions. Environ. Pollut. 2018, 234, 318-329. [CrossRef] [OpenAIRE]

8. Lähde, T.; Giechaskiel, B.; Pavlovic, J.; Suarez-Bertoa, R.; Valverde, V.; Clairotte, M.; Martini, G. Solid Particle Number Emissions of 56 Light-Duty Euro 5 and Euro 6 Vehicles. J. Aerosol Sci. 2022, 159, 105873. [CrossRef]

9. Giechaskiel, B. Particle Number Emissions of a Diesel Vehicle during and between Regeneration Events. Catalysts 2020, 10, 587. [CrossRef] [OpenAIRE]

10. Transport & Environment New Diesels, New Problems. European Federation for Transport and Environment AISBL. Brussels, Belgium. 2020. Available online: https://www.transportenvironment.org/wp-content/uploads/2021/07/2020_01_New_ diesels_new_problems_full_report.pdf (accessed on 7 February 2022).

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold