Powered by OpenAIRE graph
Found an issue? Give us feedback

Mechanisms and Control of Resistive Switching in Dielectrics

Funder: UK Research and InnovationProject code: EP/M00662X/1
Funded under: EPSRC Funder Contribution: 500,120 GBP

Mechanisms and Control of Resistive Switching in Dielectrics

Description

So-called "resistive-switching" devices are based on nanostructured dielectric materials, in which the resistance can be varied and memorised. Arguably these devices will lead to a range of disruptive technologies in the field of infromation storage over the next 20 years. Potentially these non-volatile resistive-switching devices can have potentially high speeds, high densities, long retention times and high endurance which will drastically enhance the performance of non-volatile memories and also revolutionise the computer architectures. This research sets out to understand the property - process - structure relationships of oxide dielectrics with programmable resistance. A combination of modelling, synthesis and characterisation will be used to advance the understanding of defects in oxide materials and their control. The aims of the proposed research are to elucidate the nature and mechanisms of the formation and migration of the defects and to explore ways to control and enhance their electrical properties for resistive-switching applications. The global market for memory devices amounts to more than $57 billion and has been projected to grow to $99 billion by 2015. Within this market, a number of existing memory technologies, (DRAM, SRAM, and NAND Flash) have inherent scaling issues to overcome beyond the next generation. The search for alternative solutions is gaining momentum and an alternative candidate is Resistive RAM which exploits the resistive-switching mechanism. The UK Electronic Systems Community employs more than 850,000 people, which constitutes approximately 3% of the UK workforce. Approximately half of this employment is found in the 30,000 enterprises whose business is overtly the provision of Electronic Systems and the technologies and capabilities they need. The rest are within businesses that occupy market sectors spanning aerospace, defence, healthcare, retail, media and education. The potential impact of this project will be the development of a new manufacturing process technology, which will have applications across these sectors in the UK. The impact in terms of new materials, chemistry, products and processes will be significant if the projeproposed objectives are realised.

Data Management Plans
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f3431906b085012deefd8a19e67b2613&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down