Powered by OpenAIRE graph
Found an issue? Give us feedback

UNE

ASOCIACION ESPANOLA DE NORMALIZACION
Country: Spain
76 Projects, page 1 of 16
  • Funder: EC Project Code: 101060474
    Overall Budget: 1,996,220 EURFunder Contribution: 1,995,970 EUR

    CLIMED-FRUIT aims to broaden EIP Operational Group outcomes across borders, in the field of adaptation to climate change and mitigation for perennial crops in Mediterranean Area, by compiling and sharing knowledge ready for practice.

    more_vert
  • Funder: EC Project Code: 687534
    Overall Budget: 2,386,920 EURFunder Contribution: 2,002,910 EUR

    Annual volume at global container terminals will rise by a 5.6% rate during the next 5 years and reach 840 million TEU by 2018.The usual way for ports to deal with the increasing demand of sea transport and compete against competitors is to expand the port in the original site. There is scarcity of land available for port expansion in densely populated urban areas where most of European ports are situated. This fact is causing that many container terminals are coping with congestion and capacity problems. Therefore, port managers are searching for more efficient and cost-effective means in the handling of containers while still trying to introduce innovative technical solutions. Container handling equipment automation is an innovative technological solution that contributes not only to improve the utilization rate of equipment and reduce operating costs, but also greatly improve efficiency of terminals. LOGIMATIC proposes an ad-hoc advanced location and navigation solution to enable the automation of existing port vehicles with a significantly lower cost which will allow short-medium term investments until the whole port fleet is renewed with totally autonomous vehicles in the long term. The project will develop and demonstrate an innovative location and navigation solution for the automation of the operations of straddle carriers in container terminals. Objectives: ● To develop an advanced automated navigation solution based on the integration of Global Navigation Satellite Systems (GNSS) and sensors onboard the SC vehicles. ● To implement a GIS-based control module compatible with existing Terminal Operating Systems (TOS) for optimized global (yard level) route planning and fleet management. ● To implement security mechanism in order to detect and avoid spoofing and/or jamming attacks ● To assess the impact of application of such automated approach at large scale through simulation ● To integrate, validate and demonstrate the proposed solution in a real port yard.

    visibility2K
    visibilityviews2,413
    downloaddownloads13,316
    Powered by Usage counts
    more_vert
  • Funder: EC Project Code: 101137615
    Funder Contribution: 4,008,060 EUR

    Battery2Life will facilitate the smooth transition of batteries to 2nd life use and boost the innovation of the European Battery Industry by providing enablers to implement open adaptable smart BMSes and improved system designs and proposing methods for the efficient and reliable reconfiguration of used batteries. Battery2Life introduces two new battery system design frameworks serving the upcoming market needs: the first supports the business transition for the initial market by restructuring existing battery design patterns while the second one introduces completely new design principles for 1st and 2nd life of the battery. A completely new BMS design mentality is introduced to the battery industry by delivering an open and interoperable hybrid BMS architecture (with an Embedded and a Cloud section) leading the transition from technology-driven BMS designs, to serve the needs of specific applications and battery technologies, to new data-driven and application-agnostic BMS designs, that can be easily adapted and updated to serve the requirements of different battery technologies and any 2nd life battery stationary storage application. Furthermore, Battery2Life introduces innovative embedded sensing and more accurate SOX estimation algorithms, new SOX indicators appropriate for 2nd life use -i.e. SOS (safety) and SOW (warranty) - and a new EIS implementation approach by integrating it in the BMS, that will enable the detailed safety and reliability monitoring at both cell and module level during 1st and 2nd life usage. The project will specify an open BMS concept, data formats, taking into account and extending the battery passport concept, and interoperable communication via the cloud platform to third parties including the future passport exchange system, to facilitate monitoring and assessment. The project prototypes will be demonstrated within the context of two business cases, i.e. domestic storage application and utility-scale load levelling one.

    more_vert
  • Funder: EC Project Code: 101103708
    Overall Budget: 4,915,350 EURFunder Contribution: 4,915,350 EUR

    Acceleration of growth of the battery sector is primordial in decarbonizing our economy as batteries play a vital role not only in making our mobility sustainable but also in increasing the uptake of renewable energies. Growth and particularly innovation in this sector are predominantly hindered by costly and time-consuming test protocols and methods that require large number of samples and sophisticated infrastructure. A battery concept generated in 2023 may at best reach the production stage in 2032 as performance, ageing and safety characteristics of the design must be assessed through a lengthy trial-and-error based physical testing. THOR aims to shorten this timeframe, diminish the number of physical tests and nurture innovation in battery conception by developing a virtual tool - a Digital Twin that simulates battery behavior. The project will target mobility and stationary applications and will focus on commonly used battery chemistries (representing 60% market share before 2030). Through an interdisciplinary approach involving experimentalists and modeling experts, 3 independent physics-based models for performance, lifetime and safety will be developed. The 3 models will then be combined and optimized using AI based approach to form a holistic digital twin of cell, module and pack. The digital twin will be accessible to the end-users through an efficient, user-friendly interface. THOR’s consortium covering the entire battery value chain will ensure that the project responds to the needs of battery industries (4 industrial partners including cell/ battery manufacturers and end-users) while enriching knowledge of the research community (3 research and technical organizations). In addition, the consortium aims to answer two requirements of the battery community: data harmonization and standardization of methodologies through the project. Ease-of-use, cost-effectiveness, rapidity and adaptability of the Digital Twin will be demonstrated by end-users.

    more_vert
  • Funder: EC Project Code: 101057597
    Overall Budget: 5,727,390 EURFunder Contribution: 5,727,390 EUR

    The NanoBloc consortium of 4 leading universities & institutes, and 5 companies (3 SMEs & 2 large enterprises) will develop & upscale (from TRL3 to TRL6) new all-European antimicrobial, antifungal & antiviral coatings made by industrially scalable, green technology suitable for application on a variety of substrates- porous filter materials (air filtration units, face masks), textiles (protective clothing, mattress covers, aprons, wallpaper), & on a variety of high-traffic solid surfaces (door knobs, handles, handrails, sanitaryware-taps, etc.). A research line will focus on thin coatings- <200 nanometers- deposited by Physical Vapour Deposition, formed by a glass and/or ceramic matrix (e.g. silica) capable of incorporating silver or other metal nanoparticles, which can be applied on countless substrates. These coatings allow a gradual release of ions without dispersing the nanoparticles in the surrounding environment & have demonstrated their effectiveness toward proliferation of bacteria, fungi & viruses including respiratory syncytial virus, influenza virus A & with demonstrated virucidal effect towards SARS-CoV-2 on face masks. They can withstand temperatures up to 450 degrees celsius without altering their antimicrobial properties, thereby suited for thermal regeneration. In addition, the project will build on previous work in obtaining coatings effective against a range of pathogens using technologies such as UV cured lacquers, sol-gel and electrophoretic deposition. A key strength in our approach is in merging these research lines to obtain innovative products that will be brought to market by our industry participants. New knowledge generated in the project on antiviral mechanisms & coating durability in operating conditions, will be used to select the most suitable technology for each application & to develop and up-scale effective & durable biocidal/virucidal coatings to relevant demonstrators with no toxic effects for health & environment.

    more_vert
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.