
SIMBEYOND BV
SIMBEYOND BV
2 Projects, page 1 of 1
Open Access Mandate for Publications and Research data assignment_turned_in Project2022 - 2026Partners:TU/e, SIMBEYOND BV, UR1, UBx, UV +3 partnersTU/e,SIMBEYOND BV,UR1,UBx,UV,CNRS,University of Bayreuth,University of CologneFunder: European Commission Project Code: 101073045Funder Contribution: 1,846,490 EURIn the 21st century, displays play a central role. They are embedded in almost every type of electronic device and it is difficult to imagine a world without mobile phones, monitors and televisions. Driving the pervasiveness of displays is the disruptive organic light-emitting diode (OLED) technology. There are, however, some structural weaknesses in state-of-the-art vacuum-deposited OLEDs. These include the use of scarce metals within the materials of the device and the reliance on energy-intensive and expensive vacuum deposition fabrication methods. Solutions are required to make these devices more sustainable from choice of materials to manufacturing processes. The European Doctoral Training Network TADFsolutions will train a cohort of dynamic researchers to devise, develop and implement sustainable solutions for improving the device performance of solution-processed OLEDs. The 10 PhD scientists will undertake multidisciplinary research to meet this design challenge. Despite being cheaper, the current best solution-processed OLEDs (SP-OLEDs) still rely on scarce noble-metal based phosphorescent emitters and underperform compared to vacuum-deposited OLEDs. Starting from bespoke organic thermally activated delayed fluorescence emitter materials, the performance of SP-OLEDs will be maximized based on improved predictive models of charge transport, film processing techniques, and device structures. A strongly interconnected approach is required not only to effectively train the DFs but to meet the objectives. The TADFsolutions network consists of 8 leading European academics, 3 companies and 5 international partners that are equipped and experienced to not only confront the materials and device design challenges but to provide a robust multidisciplinary and intersectoral training environment to ensure that the DFs have the requisite skills, both soft and technical, to enter the employment market and contribute to securing Europe’s leading role in OLED materials.
more_vert Open Access Mandate for Publications and Research data assignment_turned_in Project2018 - 2022Partners:Vilnius University, Durham University, IP of NASU, FLUXIM, University of Bayreuth +5 partnersVilnius University,Durham University,IP of NASU,FLUXIM,University of Bayreuth,UNIPR,USTAN,Universität Augsburg,MERCK KOMMANDITGESELLSCHAFT AUF AKTIEN,SIMBEYOND BVFunder: European Commission Project Code: 812872Overall Budget: 3,942,040 EURFunder Contribution: 3,942,040 EURThe European Training Network TADFlife will train a cohort of young PhD scientists within a multidisciplinary research program conceived from a simple industrial need, high performance blue OLEDs which also have long lifetime. This is not an easy problem to solve, as although OLEDs are now ubiquitous in phone and TV displays, the blue pixels still operate far below the performance and efficiency of the red and green to achieve acceptable lifetime. TADFlife will follow a new approach to solve this problem using the latest generation of OLED materials, thermally activated delayed fluorescent (TADF) emitters. Through a device simulation development program, which incorporates a high degree of basic photophysics input, predictive models of TADFOLED performance and lifetime will be built and used to design new TADF emitters and hosts which overcome the degradation pathways identified from the model predictions. These new materials will then be synthesised. By introducing the concept of the smart matrix, the complex guest host interactions of TADF materials will be included and used to optimise emitter orientation to maximise light out-coupling from devices. Quantum chemistry will use the photophysics results to direct new materials design in tandem with the model predictions. Taking this dual approach, we believe will lead to solutions so far unobtainable for OLEDs. This highly interlinked program gives a fantastic opportunity for the brightest young chemists, spectroscopists, theoreticians and device physicists to work together, learn complimentary skills that will be in high demand from European OLED industries. Leading experts will give courses on core scientific skills along with soft skills and international secondments will be offered, all to properly prepare them for their future careers. They will be part of a network answering a real industrial need and help to secure the future of our European OLED industries in the global OLED materials arena.
more_vert