Powered by OpenAIRE graph
Found an issue? Give us feedback

Meggitt PLC

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/L017695/1
    Funder Contribution: 2,920,230 GBP

    The world around us is full of modern technology designed to make our lives safer, more comfortable and more efficient. Such technology is made possible by materials and devices that are able to interact with their surrounding environment either by sensing or acting upon it. Examples of such devices include motion detectors, fuel injectors, engine sensors and medical diagnostic tools. These interactive devices contain functional materials that can pose health hazards, are obtained from parts of the world where supply cannot be guaranteed or are relatively scarce. If access to these functional materials is restricted, many of these advances will no longer be available resulting in a reduction in living standards and decreased UK economic growth. There already exist a number of replacement materials that can provide the same functions without the same levels of concerns around safety, security of supply and sustainability. However, these replacement materials need to be manufactured using different processes compared to existing materials. This project explores new manufacturing technologies that could be used to create interactive devices that contains less harmful and sustainable materials with a secure supply. This project will focus on two types of material - thermoelectric and piezoelectric - where the replacement materials share a set of common challenges: they need to be processed at elevated temperatures; they contain elements that evaporate at high temperatures (making high temperature processing and processing of small elements difficult); they are mechanically fragile making it difficult to shape the materials by cutting, grinding or polishing; they are chemically stable making it difficult to shape them by etching; and many are air and moisture sensitive. The proposed research will address these challenges through three parallel research streams that proactively engage with industry. The first stream is composed of six manufacturing capability projects designed to develop the core manufacturing capabilities and know-how to support the programme. The second is a series of short term feasibility studies, conducted in collaboration with industry, to explore novel manufacturing concepts and evaluate their potential opportunities. Finally, the third stream will deliver focussed industrially orientated projects designed to develop specific manufacturing techniques for in an industrial manufacturing environment. The six manufacturing capability projects will address: 1) The production of functional material powders, using wet and dry controlled atmosphere techniques, needed as feedstock in the manufacture of bulk and printed functional materials. 2) How to produce functional materials while maintaining the required chemistry and microstructure to ensure high performance. Spark Plasma Sintering will be used to directly heat the materials and accelerate fusion of the individual powder particles using an electric current. 3) Printing of functional material inks to build up active devices without the need to assemble individual components. Combing industrially relevant printing processes, such as screen printing, with controlled rapid temperature treatments will create novel print manufacturing techniques capable of handling the substitute materials. 4) How to join and coat these new functional materials so that they can be assembled into a device or protected from harsh environments when in use. 5) The fitness of substituted material to be compatible with existing shaping and treatment stages found later in the manufacturing chain. 6) The need to ensure that the substitute materials do not pose an equal or greater risk within the manufacturing and product life cycle environment. Here lessons learned from comparable material systems will be used to help predict potential risks and exposures.

    more_vert
  • Funder: UK Research and Innovation Project Code: MR/V02180X/1
    Funder Contribution: 1,458,060 GBP

    There is an increasing demand across engineering sectors for advanced materials, many of which are incompatible with current manufacturing processes due to their sensitivity with heat, impact and abrasion (e.g. composites, metallic glass and intermetallics). The economic machining of these materials is essential to exploit their enhanced properties and overcome some of the 21st century's challenges, including the development of efficient zero-emissions transportation. Transportation is the largest contributor of greenhouse gas (GHG) emissions in the UK, accounting for 28% of the total. The UK Government's Transport Decarbonisation Plan aims to achieve net-zero GHG emissions by 2050, with a staged introduction from 2030. Comprehensive use of advanced composites in the structure and propulsion systems of aerospace and automotive vehicles will result in significant GHG emissions reduction. Currently, however, the lack of cost-effective and reliable manufacturing processes is limiting the pace of adoption in the aerospace and automotive industry. This fellowship aims to develop and demonstrate next-generation laser-based manufacturing technology that will enable advanced composites to become effective solutions for application and adoption across multiple sectors. The goal will be achieved by transforming two emerging laser-based technologies into fully-fledged industrial solutions, underpinning the large scale industrialisation of advanced composite solutions. The first of these technologies is the water-jet guided laser (WJGL); initial work performed at the MTC has proven its capability on composite cutting. However, the current generation of WJGL technology, developed for low power nanosecond lasers, is not suitable for the mass production industrial environment. To overcome this issue, this fellowship will develop a novel high-power WJGL system with a 2kW microsecond laser for cutting and drilling of composite materials, offering a 10x increase in productivity whilst maintaining component quality. Ultra-short pulse laser (USPL) can ablate any material by cold ablation. While this extraordinary capability has been proven using low power USPL for a limited number of niche applications, its low material removal rate and its drawback of edge wall taper are currently limiting its viability in the wider manufacturing sector. To address the power limitations, the MTC together with its partners, are developing high-energy USPL with an average power of 2kW. The challenge now is to exploit the kilowatt range USPL without losing its cold ablation capability. This fellowship will develop a novel beam scanner that will facilitate stable filament-based USPL beam propagation and ultra-high-speed beam manipulation which will enable the exploitation of kilowatt range USPL for cold ablation-based machining of composites with enhanced processing rate capabilities and without edge wall taper. Working closely with strategically vital high-value manufacturing industries, universities and the HVM Catapult centre, my fellowship aims to transform the laser-based manufacturing, manufacturability of composites, and accelerate their economic exploitation in industries, through the following: 1. Technical development: Development of novel laser-based technologies for high-volume throughput and high-quality manufacturing of composites. 2. Scientific investigation: Science-based investigations to develop the underpinning knowledge and understanding of laser-based manufacturing. 3. Industrial exploitation: Facilitate the exploitation of the laser-based composite manufacturing within the automotive and aerospace industries (both facing increased financial and environmental challenges) in the near-term and the wider manufacturing sector in the long-term. 4. Resource development: Enriching the skills base, leadership, and infrastructure for a long-term sustainable R&D competency in the UK on next-generation laser-based manufacturing.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S023879/1
    Funder Contribution: 6,336,920 GBP

    Ultrasonics, the science and technology of sound at frequencies above the audible range, has a huge range of applications in sensing and remote delivery of energy. In sensing, 20% of medical scans rely on ultrasonics for increasingly diverse procedures. Ultrasonics is pervasive in underwater sensing and communication and a key technology for non-destructive evaluation. Ultrasonic devices are essential components in every mobile phone and are being developed for enhanced biometric security. Ultrasound is also important in remote delivery of energy. In medical therapy, it is used to treat neural dysfunction and cancer. Many surgical tools are actuated with ultrasound. As the best way to clean surfaces and bond interconnects, ultrasound is pervasive in semiconductor and electronics fabrication; it is also being explored for power delivery to implants and to give a contactless sense of touch. Such a broad range of applications predicts an exciting future: new materials will emerge into applications; semiconductor circuits will deliver smaller, more convenient instrumentation systems; autonomy and robotics will call for better sensors; and data analysis will benefit from machine learning. To maintain competitive advantage in this dynamic and multidisciplinary topic, companies worldwide rely on ambitious, innovative engineers to provide their unique knowledge of ultrasonics. As a significant contribution to address this need, Medical & Industrial Ultrasonics at the University of Glasgow and the Centre for Ultrasonic Engineering at the University of Strathclyde will combine to form the Centre for Doctoral Training in Future Ultrasonic Engineering (FUSE), the largest academic ultrasonic engineering unit in the world. Working with more than 30 external organisations, from microcompanies to multinationals, this will, for the first time, enable systematic training of a new generation of leaders in ultrasonics research, engineering and product development. This training will take place in the world-class research environment provided by two of the UK's pre-eminent universities with its partners, creating a training and research powerhouse in ultrasonics that will attract the best students and put them at the global forefront of the field.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.