
PARAGON S.A.
PARAGON S.A.
13 Projects, page 1 of 3
assignment_turned_in Project2011 - 2013Partners:CRF, PARAGON S.A., STMicroelectronics (Switzerland), Starlab Barcelona Sl, Siemens (Germany) +11 partnersCRF,PARAGON S.A.,STMicroelectronics (Switzerland),Starlab Barcelona Sl,Siemens (Germany),CSEM,Ikerlan,CEA,MICROPTA,CSIC,SORIN GROUP,HSG-IMIT,FHG,VDI/VDE INNOVATION + TECHNIK GMBH,Thalgo (France),HITACHI EUROPE LIMITEDFunder: European Commission Project Code: 287842more_vert assignment_turned_in Project2009 - 2012Partners:UPC, Institució dels Centres de Recerca de Catalunya, BOMBARDIER, EUROCOPTER SAS, POLITO +56 partnersUPC,Institució dels Centres de Recerca de Catalunya,BOMBARDIER,EUROCOPTER SAS,POLITO,CERFACS,SIEMENS PLM,NTUA,Cranfield University,SNECMA SA,LMS SAMTECH,Pyramis Consulting,SAAB,PARAGON S.A.,Rolls-Royce (United Kingdom),Alenia Aermacchi,UNINOVA,Vinci Consulting,Royal NLR,Airbus Operations Limited,Ansys (United States),ROLLS-ROYCE DEUTSCHLAND LTD & CO KG,University of Salento,ISPACE,LiU,TURBOMECA SA,BTU Cottbus-Senftenb,ONERA,University of Southampton,QUB,EUROPEAN AERONAUTIC DEFENCE AND SPACE COMPANY EADS FRANCE SAS,IRIAS,CIMNE,Airbus (India),GKN AEROSPACE SWEDEN AB,AIRCELLE SA,AIRBUS OPERATIONS,FFT,Ansys (France),ALTRAN TECHNOLOGIES S.A.,FLUOREM SAS,ASSOCIAZIONE ESOCE NET EUROPEAN SOCIETY OF CONCURRENT ENGINEERING NET,Eurostep (Sweden),DLR,FSE,INSAT,Transcendata,AFNOR,THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE,EMPRESARIOS AGRUPADOS INTERNACIONA L SA,IAI,AIRBUS OPERATIONS GMBH,MSC,Thalgo (France),AVIO S.P.A,MTU,Airbus (Netherlands),Luleå University of Technology,3DS,ARTTIC,ULFunder: European Commission Project Code: 234344more_vert assignment_turned_in Project2011 - 2013Partners:TEKNOSUD, MicrodB, Marche Polytechnic University, PARAGON S.A., PININFARINA +2 partnersTEKNOSUD,MicrodB,Marche Polytechnic University,PARAGON S.A.,PININFARINA,Trinity College Dublin, Ireland,Eurotech sasFunder: European Commission Project Code: 278419more_vert assignment_turned_in Project2011 - 2014Partners:PARAGON S.A., TU Delft, ALESSI, Electrolux (Sweden), KE-WORKS +11 partnersPARAGON S.A.,TU Delft,ALESSI,Electrolux (Sweden),KE-WORKS,SISW,PININFARINA,EPFL,SCREEN99,Electrolux (Italy),FHG,Noesis Solutions (Belgium),KE-WORKS,SCAI POLSKA SPZOO,FUNDACION CIDAUT,CENAEROFunder: European Commission Project Code: 257657more_vert Open Access Mandate for Publications and Research data assignment_turned_in Project2017 - 2021Partners:GOMA CAMPS SOCIEDAD ANONIMA, VERTECH, BOSCH REXROTH AG, Soraluce, CEA +12 partnersGOMA CAMPS SOCIEDAD ANONIMA,VERTECH,BOSCH REXROTH AG,Soraluce,CEA,Chemnitz University of Technology,LINNEUNIVERSITETET,eMAINT,SAVVY DATA SYSTEMS SL,IDEKO,SPINEA,CITMAGA,PARAGON S.A.,TUM,OVERBECK GMBH,SAKANA,LANTIER SLFunder: European Commission Project Code: 768575Overall Budget: 7,171,260 EURFunder Contribution: 6,146,400 EURCheaper and more powerful sensors, together with big data analytics, offer an unprecedented opportunity to track machine-tool performance and health condition. However, manufacturers only spend 15% of their total maintenance costs on predictive (vs reactive or preventative) maintenance. The project will deploy and test a predictive cognitive maintenance decision-support system able to identify and localize damage, assess damage severity, predict damage evolution, assess remaining asset life, reduce the probability of false alarms, provide more accurate failure detection, issue notices to conduct preventive maintenance actions and ultimately increase in-service efficiency of machines by at least 10%. The platform includes 4 modules: 1) a data acquisition module leveraging external sensors as well as sensors directly embedded in the machine tool components, 2) an artificial intelligence module combining physical models, statistical models and machine-learning algorithms able to track individual health condition and supporting a large range of assets and dynamic operating conditions, 3) a secure integration module connecting the platform to production planning and maintenance systems via a private cloud and providing additional safety, self-healing and self-learning capabilities and 4) a human interface module including production dashboards and augmented reality interfaces for facilitating maintenance tasks. The consortium includes 3 end-user factories, 3 machine-tool suppliers, 1 leading component supplier, 4 innovative SMEs, 3 research organizations and 3 academic institutions. Together, we will validate the platform in a broad spectrum of real-life industrial scenarios (low volume, high volume and continuous manufacturing). We will also demonstrate the direct impact of the platform on maintainability, availability, work safety and costs in order to document the results in detailed business cases for widespread industry dissemination and exploitation.
more_vert
chevron_left - 1
- 2
- 3
chevron_right