Powered by OpenAIRE graph
Found an issue? Give us feedback

HELIOTIS

HELIOTIS AG
Country: Switzerland
2 Projects, page 1 of 1
  • Funder: European Commission Project Code: 958417
    Overall Budget: 9,867,710 EURFunder Contribution: 9,867,710 EUR

    The new emerging generation of microsystems represents a major opportunity for a substantial EU economic growth, in an industry counting already more than 200.000 workers and a turnover in 2019 of €450 billion. The Mesomorph concept provides the means to overcome the following 4 main hurdles: 1. The intrinsic physic of microsystems doesn’t allow the simple downsizing of conventional technologies to industrialize micromanufacturing processes. Mesomorphallows to limit the number of micromanipulation tasks by integrating an all-in-onemachine featuring novel processes for the direct creation of functions (electronic, fluidic, optic) directly on a substrate, with a RESOLUTION down to 300nm, by combining multi-material addition (Two-Photon Polymerization, Atomic Layer 3D nano printing) and subtraction (Femtolaser micro-ablation) in a self-contained white room. 2. Because of the intrinsic slowness of physical processes at microscale, productivity cannot be achieved by sequencing multiple single steps. Mesomorph proposes a scaleup throughput by PARALLELIZATION and batch processing UP TO 50k PARTS/YEAR, leveraging a new multiple micronozzles system to extend the SADALP working area from 10x10mm up to 500x500mm, and concurrently leveraging on the beam splitting technique of a high-power fs laser for ablation. 3. Microsystems cannot be conceived with subcomponents. Mesomorph includes a specific Design-to-Lifevalue Platform to guide the development of new microsystems by fully exploiting the new processes. 4. Innovation cannot be limited by the financial risk associated with the necessary investments. Mesomorph implements a new “Manufacturing as a Service” business model in which all the value chain’s actors can benefit from a positive net cash flow since production's start, effectively removing entry barriers for innovators. Mesomorph consortium is composed of 13 partners from 5 different countries. Each partner represents excellence in its own field.

    more_vert
  • Funder: European Commission Project Code: 825512
    Overall Budget: 7,048,620 EURFunder Contribution: 7,048,620 EUR

    The tremendous success of lasers in industry resulted in massive demand for photonics-based solutions. At the moment lasers are inseparable part of fields like communications, medicine, science and heavy industry. This is due to outstanding versatility of light, as it can be used as means for both measurement and direct processing. One of the newest developments in the field is advent of ultra-fast femtosecond (fs) lasers. Alongside all the standard laser properties, these lasers add capability to control temporal and thermal characteristics of light-matter interaction as well as eliminate any material related restrictions due ultra-high light intensities achievable. For these reasons fs lasers are predicated to play pivotal role in 4th industrial revolution with ultrafast laser marked projected to grow up to 7.1 billion dollars by 2021. Direct surface treatment is one of the key areas where fs lasers proved highly promising. Specific light-matter interaction regimes enabled by fs pulses allow to create surface patterns in scales ranging from nanoripples to millimetre-sized grooves. Such surface features could be made into either repelling or adhering. As it is direct process applicable for any kind of surface metal patterning is especially interesting, as it could find use if fields like medicine, aerospace, maritime and tool manufacturing, replacing various coatings, lubricants or enabling entirely new properties. The main objective of FemtoSurf is to exploit the newest advances in laser development for creation of industrial-grade 2-3 kW-level fs laser that would be integrated in propose-built optical chain enabling multi-beam processing (up to 100 simultaneous beams) with individually controlled spatial distributions in each laser spot, integrated into a fully automated processing setup for efficient patterning arbitrary shaped metal components with sizes exceeding several meters while retaining micrometre level precision.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.