Powered by OpenAIRE graph
Found an issue? Give us feedback

Biological Station Roscoff

Country: France

Biological Station Roscoff

5 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: NE/J014370/1
    Funder Contribution: 10,646 GBP

    The green macroalgae, or seaweeds, are one of the most common sights on beaches and shorelines around the UK, providing food and shelter for many marine animals. The most familiar of these green seaweeds are the Ulva species; the 'sea lettuces'. These are particularly important because they act as a link between the land and the seas; increased nutrient run-off from agricultural fertilisers, or from urban sewage treatment plants, can lead to higher nutrient levels in the rivers and seas that border farmlands and cities. These enriched waters, which can also occur naturally through the spring upwelling of nutrient-rich deeper sea waters, can, in turn, see extraordinarily rapid growth of the seaweeds that live in them; the so-called 'green tides' that can choke coastal waters worldwide and which are responsible for threatening the Olympic sailing regatta at Qingdao in 2008, covering beaches along the south coast of the UK in 2010, and fouling the Breton coast annually. We still know very little, however, about these astonishingly important organisms. The proposed research aims to provide the first genome sequence of one of these green seaweeds, Ulva compressa, giving us a first look at their genomic architecture and at the genes which allow them to grow so dramatically. The UK has a strong tradition of green seaweed research, and this proposal would add to that tradition by providing a framework on which to hang 'Next Generation' genomic experiments that look at the ecology and biology of marine seaweeds.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/L013223/1
    Funder Contribution: 331,626 GBP

    Worldwide, seaweed aquaculture has been developing at an unabated exponential pace over the last six decades. China, Japan, and Korea lead the world in terms of quantities produced. Other Asiatic countries, South America and East Africa have an increasingly significant contribution to the sector. On the other hand, Europe and North America have a long tradition of excellent research in phycology, yet hardly any experience in industrial seaweed cultivation. The Blue Growth economy agenda creates a strong driver to introduce seaweed aquaculture in the UK. GlobalSeaweed: - furthers NERC-funded research via novel collaborations with world-leading scientists; - imports know-how on seaweed cultivation and breeding into the UK; - develops training programs to fill a widening UK knowledge gap; - structures the seaweed sector to streamline the transfer of research results to the seaweed industry and policy makers at a global scale; - creates feedback mechanisms for identifying emergent issues in seaweed cultivation. This ambitious project will work towards three strands of deliverables: Knowledge creation, Knowledge Exchange and Training. Each of these strands will have specific impact on key beneficiary groups, each of which are required to empower the development of a strong UK seaweed cultivation industry. A multi-pronged research, training and financial sustainability roadmap is presented to achieve long-term global impact thanks to NERC's pump-priming contribution. The overarching legacy will be the creation of a well-connected global seaweed network which, through close collaboration with the United Nations University, will underpin the creation of a Seaweed International Project Office (post-completion of the IOF award).

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/P001610/1
    Funder Contribution: 544,669 GBP

    The diversity of organisms on earth has arisen through the evolutionary splitting of lineages to form new species (speciation). The splitting process is often lengthy, involving multiple mechanisms at different stages in separation. It may begin with natural selection operating in opposite directions in different populations, causing local adaptation. However, it may also begin with incompatibilities between populations that arise when populations are spatially separated. In either case, other traits must evolve that reduce successful interbreeding, thus completing reproductive isolation. The relative importance of these different pathways to speciation is poorly understood but they are expected to leave different patterns of differentiation in the genomes of diverging populations and may be associated with different histories. We propose to test predictions of the major modes of speciation in a group of marine snails. One species in this group has multiple forms living in very distinct habitats. However, despite many differences in size, shape and behaviour, these forms are still able to interbreed successfully, perhaps because hybrids do not have much lower fitness than their parents in intermediate habitats. Paradoxically, there are also species that show little or no ecological separation, have diverged recently and yet show close to complete reproductive barriers. This allows a very direct comparison of population histories and patterns of genomic differentiation in very closely related populations that have, apparently, progressed towards speciation by different routes. We will measure the effects of spatial and temporal separation of snails on the sea shore, separation in timing of reproduction, mate choice and hybrid fitness so that we know the nature of current isolation between ecotypes and between species. We will then make use of genome re-sequencing to assess the genome-wide pattern of differentiation. These genetic data can be used to test alternative scenarios for the history of the populations and so to ask whether a period of spatial separation was likely around the origin of the species but unlikely around the origin of the ecotypes. The data can also identify parts of the genome with strong barriers to gene exchange and with signatures of past selection. These will be linked to genes involved in the development and function of the distinct reproductive systems of the egg-laying and brooding species, a candidate trait for contributing to incompatibility in hybrids. Together, these data will allow us to determine the outcomes of divergent selection and evolution of incompatibility, providing an example that will inform general theories of speciation as well as other questions in evolutionary biology, particularly the genetic basis of local adaptation.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/X027570/1
    Funder Contribution: 1,158,080 GBP

    Determining the prevalence of natural selection (including the presence of deleterious and favourable variants) from genome sequence data is a major challenge in evolutionary genetics. A sizeable number of species in nature are hermaphrodites capable of self-fertilisation, where individuals produce both female and male gametes that can be used to reproduce. Emerging genome data from such species has yielded unusual selection signatures that cannot be explained by classic predictions, which assume selection acts on local genetic regions. Genetic variation is inherited as large linked regions in self-fertilising species, which can decrease diversity and cause linked selection to act over longer genetic distances. Yet punctuated regions of diversity also exist. SelectSelf will develop theoretical and genome-inference methods to determine how different selective forces interact with this reproductive mode. Work plan 1 will develop models and methods to establish the causes of punctuated diversity (balancing selection, introgression, exposure of deleterious mutations, or residual outcrossing) in self-fertilising species. Work plan 2 will investigate to what extent adaptation by a polygenic trait will lead to long-range selective sweeps and quantify the effect of pleiotropy on this process. Work plan 3 will quantify how the distribution of deleterious mutations are affected by linked selection due to either of these evolutionary mechanisms. Throughout, new methods and theory will be applied to data from Caenorhabditis species to infer the evolutionary impacts of hyperdiversity and linked selection in self-fertilising nematodes. This project will provide a step-change in knowledge of how natural selection and reproduction interact to determine how species persist in natural environments, resulting in new standards for analysing and interpreting genetic data from self-fertilising species.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/J014370/2
    Funder Contribution: 400 GBP

    The green macroalgae, or seaweeds, are one of the most common sights on beaches and shorelines around the UK, providing food and shelter for many marine animals. The most familiar of these green seaweeds are the Ulva species; the 'sea lettuces'. These are particularly important because they act as a link between the land and the seas; increased nutrient run-off from agricultural fertilisers, or from urban sewage treatment plants, can lead to higher nutrient levels in the rivers and seas that border farmlands and cities. These enriched waters, which can also occur naturally through the spring upwelling of nutrient-rich deeper sea waters, can, in turn, see extraordinarily rapid growth of the seaweeds that live in them; the so-called 'green tides' that can choke coastal waters worldwide and which are responsible for threatening the Olympic sailing regatta at Qingdao in 2008, covering beaches along the south coast of the UK in 2010, and fouling the Breton coast annually. We still know very little, however, about these astonishingly important organisms. The proposed research aims to provide the first genome sequence of one of these green seaweeds, Ulva compressa, giving us a first look at their genomic architecture and at the genes which allow them to grow so dramatically. The UK has a strong tradition of green seaweed research, and this proposal would add to that tradition by providing a framework on which to hang 'Next Generation' genomic experiments that look at the ecology and biology of marine seaweeds.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.