
Renuda UK
Renuda UK
7 Projects, page 1 of 2
assignment_turned_in Project2021 - 2025Partners:nVIDIA, nVIDIA, Siemens (United States), Fosters and Partners, SIR Norman Foster & Partners +8 partnersnVIDIA,nVIDIA,Siemens (United States),Fosters and Partners,SIR Norman Foster & Partners,Renuda UK,Intel UK,Siemens Corporation (USA),Siemens Corporation (USA),UCL,Imperial College London,Intel Corporation (UK) Ltd,Renuda UKFunder: UK Research and Innovation Project Code: EP/W026686/1Funder Contribution: 2,670,330 GBPThis proposal brings together communities from the UK Turbulence Consortium (UKTC) and the UK Consortium on Reacting Flows (UKCRF) to ensure a smooth transition to exascale computing, with the aim to develop transformative techniques for future-proofing their production simulation software ecosystems dedicated to the study of turbulent flows. Understanding, predicting and controlling turbulent flows is of central importance and a limiting factor to a vast range of industries. Many of the environmental and energy-related issues we face today cannot possibly be tackled without a better understanding of turbulence. The UK is preparing for the exascale era through the ExCALIBUR programme to develop exascale-ready algorithms and software. Based on the findings from the Design and Development Working Group (DDWG) on turbulence at the exascale, this project is bringing together communities representing two of the seven UK HEC Consortia, the UKTC and the UKCTRF, to re-engineer or extend the capabilities of four of their production and research flow solvers for exascale computing: XCOMPACT3D, OPENSBLI, UDALES and SENGA+. These open-source, well-established, community flow solvers are based on finite-difference methods on structured meshes and will be developed to meet the challenges associated with exascale computing while taking advantage of the significant opportunities afforded by exascale systems. A key aim of this project is to leverage the well-established Domain Specific Language (DLS) framework OPS and the 2DECOMP&FFT library to allow XCOMPACT3D, OPENSBLI, UDALES and SENGA+ to run on large-scale heterogeneous computers. OPS was developed in the UK in the last ten years and it targets applications on multi-block structured meshes. It can currently generate code using CUDA, OPENACC/OPENMP5.0, OPENCL, SYCL/ONEAPI, HIP and their combinations with MPI. The OPS DSLs' capabilities will be extended in this project, specifically its code-generation tool-chain for robust, fail-safe parallel code generation. A related strand of work will use the 2DECOMP&FFT a Fortran-based library based on a 2D domain decomposition for spatially implicit numerical algorithms on monobloc structured meshes. The library includes a highly scalable and efficient interface to perform Fast Fourier Transforms (FFTs) and relies on MPI providing a user-friendly programming interface that hides communication details from application developers. 2DECOMP&FFT will be completely redesigned for a use on heterogeneous supercomputers (CPUs and GPUS from different vendors) using a hybrid strategy. The project will also combine exascale-ready coupling interfaces, UQ capabilities, I/O & visualisation tools to our flow solvers, as well as machine learning based algorithms, to address some of the key challenges and opportunities identified by the DDWG on turbulence at the exascale. This will be done in collaboration with several of the recently funded ExCALIBUR cross-cutting projects. The project will focus on four high-priority use cases (one for each solver), defined as high quality, high impact research made possible by a step-change in simulation performance. The use cases will focus on wind energy, green aviation, air quality and net-zero combustion. Exascale computing will be a game changer in these areas and will contribute to make the UK a greener nation (The UK commits to net zero carbon emissions by 2050). The use cases will be used to demonstrate the potential of the re-designed flow solvers based on OPS and 2DECOMP&FFT, for a wide range of hardware and parallel paradigms.
more_vert assignment_turned_in Project2024 - 2027Partners:Renuda UK, Newcastle University, Rolls-Royce Plc (UK), Kyoto UniversityRenuda UK,Newcastle University,Rolls-Royce Plc (UK),Kyoto UniversityFunder: UK Research and Innovation Project Code: EP/Y017951/1Funder Contribution: 385,258 GBPWith the need for the development of novel hydrogen-compatible combustion devices, physical understanding of the flame behaviour and the identification of thermoacoustic instabilities at relevant combustor operating conditions for hydrogen-air swirl flames will help speed up the development of hydrogen combustors, in line with the UK government's net-zero vision. The proposed research will offer potential benefits to industry and contribute to the progress of science in the areas of fluid dynamics, turbulence and net-zero combustion. These include (i) An advanced Direct Numerical Simulation (DNS) database for hydrogen-air premixed swirl flames under representative combustor operating conditions. (ii) A comprehensive understanding and a detailed analysis of the behaviour of the Precessing Vortex Core (PVC) under non-reacting and reacting flow conditions. (iii) Identification of the combustor operating conditions for which hydrodynamic/thermoacoustic instabilities exist. (iv) An in-depth analysis on extinction strain rates and heat release rate for lean hydrogen premixed flames. The outcomes of this project will offer knowledge on the flame stability limits and will contribute to the development of hydrogen based power generation and propulsion devices (e.g. gas turbines used for power generation and aircraft engines).
more_vert assignment_turned_in Project2017 - 2019Partners:Newcastle University, Renuda UK, Newcastle University, Renuda UKNewcastle University,Renuda UK,Newcastle University,Renuda UKFunder: UK Research and Innovation Project Code: EP/P022286/1Funder Contribution: 475,707 GBPThis project focuses on the development, validation and documentation of a next-generation fully parallelised computa-tional fluid dynamics (CFD) code called HAMISH based on adaptive mesh refinement (AMR) which will enable high-fidelity Direct Numerical Simulations (DNS) of advanced turbulent reacting flows such as flame-wall interaction, localised ignition, and droplet combustion including atomisation processes. Such simulations cannot be achieved at present without limiting simplifications due to their prohibitive computational cost. AMR for large-scale highly-parallel simulations of compressible turbulent reacting flows is a significant new functionality which will offer major benefits in terms of computational economy for problems involving thin fluid-mechanical structures, e.g. resolution of both the flame and the boundary layer in flame-wall interaction, droplet surfaces in atomisation in spray combustion, shock waves in localised forced ignition, etc. Such structures have either been ignored or simplified severely in previous work due to the prohibitive computational cost of fixed global meshes, thus limiting the usefulness of the simulations. Hence AMR will offer a step-change in capability for the computational analysis of turbulent reacting flows, and will provide data with the degree of detailed physical information which is not currently available from simulations using existing CFD codes. The proposed software will be validated with respect to the results obtained from the well-proven uniform-mesh DNS code SENGA2, which has already been ported to ARCHER and is currently widely used by members of the UK Consortium on Turbulent Reacting Flows (UKCTRF). The newly developed code, HAMISH, will not only be ported to ARCHER, but also be prepared for architectures supporting accelerators thanks to OpenMP 4.5, which will support OpenACC, targeting a POWER8 cluster. As a part of this project, a detailed user guide will be produced at each new release of the code. This user guide will be made available on a website for public download along with the open-source version of the code and the associated documentation on code validation and user tutorials.
more_vert assignment_turned_in Project2021 - 2025Partners:Renuda UK, British Energy Generation Ltd, CD-adapco, Convergent Science, Ricardo UK +9 partnersRenuda UK,British Energy Generation Ltd,CD-adapco,Convergent Science,Ricardo UK,CD-adapco,Ricardo (United Kingdom),Newcastle University,Computational Dynamics Limited,Renuda UK,EDF Energy (United Kingdom),Convergent Science (International),Newcastle University,EDF Energy Plc (UK)Funder: UK Research and Innovation Project Code: EP/V003534/1Funder Contribution: 776,895 GBPThe presence of walls alters the thermo-chemical and fluid-dynamical processes associated with turbulent premixed flames. The increasing demands for light-weight combustors make flame-wall interactions (FWI) inevitable, which influence the cooling load, thermal efficiency and pollutant emission in these applications. However, this aspect has not yet been sufficiently analysed in the existing turbulent reacting flow literature because of the challenge this poses for both experimental and numerical investigations in terms of spatial and temporal resolutions among others. Therefore, a thorough physical understanding of the FWI mechanism is necessary to develop and design more energy-efficient and environmentally-friendly combustion devices. In this project, recent advances of both high-performance computing and experimental techniques will be utilised to analyse and model premixed FWI in turbulent boundary layers (TBLs). The proposed analysis will consider different FWI configurations (based on the orientation of the mean flame normal with respect to the wall) in turbulent channel flows and unconfined boundary layers (BLs) using state-of-the-art experiments and high-fidelity Direct Numerical Simulations for different wall boundary conditions. Experiments will utilize a suite of advanced laser diagnostics, providing new simultaneous measurement capabilities. DNS will simulate the turbulent flow without any recourse to physical approximations. The fundamental physical insights obtained from DNS and experimental data will be used to develop a novel hybrid RANS/LES approach for device-scale simulation of FWI, building on expertise in the context of Flame Surface Density (FSD) and Scalar Dissipation Rate (SDR) closures for Reynolds Averaged Navier Stokes (RANS) and Large Eddy Simulations (LES). The newly-developed models will be implemented to carry out hybrid RANS/LES of experimental configurations for the purpose of model validation. The project will offer robust and cost-effective Computational Fluid Dynamics (CFD) design tools for fuel-efficient and low-emission combustion devices (e.g. gas turbines, micro-combustors and automotive engines).
more_vert assignment_turned_in Project2014 - 2019Partners:Newcastle University, Newcastle University, Renuda UK, Renuda UKNewcastle University,Newcastle University,Renuda UK,Renuda UKFunder: UK Research and Innovation Project Code: EP/K025163/1Funder Contribution: 169,479 GBPThe proposed UK Consortium on Turbulent Reacting Flows will perform high-fidelity computational simulations (i.e. Reynolds Averaged Navier-Stokes simulations (RANS), Large Eddy Simulation (LES) and Direct Numerical Simulations (DNS)) by utilising national High Performance Computing (HPC) resources to address the challenges related to energy through the fundamental physical understanding and modelling of turbulent reacting flows. Engineering applications range from the formulation of reliable fire-safety measures to the design of energy-efficient and environmentally-friendly internal combustion engines and gas turbines. The consortium will serve as a platform to collaborate and share HPC expertise within the research community and to help UK computational reacting flow research to remain internationally competitive. The proposed research of the consortium is divided into a number of broad work packages, which will be continued throughout the duration of the consortium and which will be reinforced by other Research Council and industrial grants secured by the consortium members. The consortium will also support both externally funded (e.g. EU and industrial) and internal (e.g. university PhD) projects, which do not have dedicated HPC support of their own. The consortium will not only have huge intellectual impact in terms of fundamental physical understanding and modelling of turbulent reacting flows, but will also have considerable long-term societal impact in terms of energy efficiency and environmental friendliness. Moreover, the cutting edge computational tools developed by the consortium will aid UK based manufacturers (e.g. Rolls Royce and Siemens) to design safe, reliable, energy-efficient and environmentally-friendly combustion devices to exploit the expanding world-wide energy market and boost the UK economy. Last but not least, the proposed collaborative research lays great importance on the development of highly-skilled man-power in the form of Research Associates (RAs) and PhD students of the consortium members, who in turn are expected to contribute positively to the UK economy and UK reacting flow research for many years to come.
more_vert
chevron_left - 1
- 2
chevron_right