Powered by OpenAIRE graph
Found an issue? Give us feedback

Indian Institute of Technology Guwahati

Indian Institute of Technology Guwahati

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/L016362/1
    Funder Contribution: 3,527,890 GBP

    The motivation for this proposal is that the global reliance on fossil fuels is set to increase with the rapid growth of Asian economies and major discoveries of shale gas in developed nations. The strategic vision of the IDC is to develop a world-leading Centre for Industrial Doctoral Training focussed on delivering research leaders and next-generation innovators with broad economic, societal and contextual awareness, having strong technical skills and capable of operating in multi-disciplinary teams covering a range of knowledge transfer, deployment and policy roles. They will be able to analyse the overall economic context of projects and be aware of their social and ethical implications. These skills will enable them to contribute to stimulating UK-based industry to develop next-generation technologies to reduce greenhouse gas emissions from fossil fuels and ultimately improve the UK's position globally through increased jobs and exports. The Centre will involve over 50 recognised academics in carbon capture & storage (CCS) and cleaner fossil energy to provide comprehensive supervisory capacity across the theme for 70 doctoral students. It will provide an innovative training programme co-created in collaboration with our industrial partners to meet their advanced skills needs. The industrial letters of support demonstrate a strong need for the proposed Centre in terms of research to be conducted and PhDs that will be produced, with 10 new companies willing to join the proposed Centre including EDF Energy, Siemens, BOC Linde and Caterpillar, together with software companies, such as ANSYS, involved with power plant and CCS simulation. We maintain strong support from our current partners that include Doosan Babcock, Alstom Power, Air Products, the Energy Technologies Institute (ETI), Tata Steel, SSE, RWE npower, Johnson Matthey, E.ON, CPL Industries, Clean Coal Ltd and Innospec, together with the Biomass & Fossil Fuels Research Alliance (BF2RA), a grouping of companies across the power sector. Further, we have engaged SMEs, including CMCL Innovation, 2Co Energy, PSE and C-Capture, that have recently received Department of Energy and Climate Change (DECC)/Technology Strategy Board (TSB)/ETI/EC support for CCS projects. The active involvement companies have in the research projects, make an IDC the most effective form of CDT to directly contribute to the UK maintaining a strong R&D base across the fossil energy power and allied sectors and to meet the aims of the DECC CCS Roadmap in enabling industry to define projects fitting their R&D priorities. The major technical challenges over the next 10-20 years identified by our industrial partners are: (i) implementing new, more flexible and efficient fossil fuel power plant to meet peak demand as recognised by electricity market reform incentives in the Energy Bill, with efficiency improvements involving materials challenges and maximising biomass use in coal-fired plant; (ii) deploying CCS at commercial scale for near-zero emission power plant and developing cost reduction technologies which involves improving first-generation solvent-based capture processes, developing next-generation capture processes, and understanding the impact of impurities on CO2 transport and storage; (iimaximising the potential of unconventional gas, including shale gas, 'tight' gas and syngas produced from underground coal gasification; and (iii) developing technologies for vastly reduced CO2 emissions in other industrial sectors: iron and steel making, cement, refineries, domestic fuels and small-scale diesel power generatort and These challenges match closely those defined in EPSRC's Priority Area of 'CCS and cleaner fossil energy'. Further, they cover biomass firing in conventional plant defined in the Bioenergy Priority Area, where specific issues concern erosion, corrosion, slagging, fouling and overall supply chain economics.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P023320/1
    Funder Contribution: 332,646 GBP

    This project will assess a class of systems that blend electricity generation and storage, to understand the role that they could play in future energy systems. Their ability to deliver low-carbon energy on demand, at low system cost, will be investigated from technical, economic, and policy standpoints. With a growing fraction of electricity consumption being supplied by variable renewable energy sources, the ability to match energy generation and energy consumption is rapidly taking centre stage. Flexible ('dispatchable') coal and gas plants are being displaced to lower carbon emissions. At present, both nuclear and renewable energy technologies are generally configured to generate as much electricity as possible, regardless of the electricity demand at the time. Standalone energy storage, in which surplus electricity is converted to an intermediate energy form and then back again, is emerging as a vital partner to these generation technologies but it is prohibitively expensive for the duties that will be required in the near future. Active management of electricity demand (by shutting down or deferring loads) and electrical interconnections with neighbouring countries will also play important roles but these also have costs and they will not obviate the need for storage. This project will build a deep understanding of a class of system which takes a different and potentially much lower cost approach. These Generation Integrated Energy Storage (GIES) systems, store energy in a convenient form before converting it to electricity on demand. The hypothesis is that the lowest cost and highest performance storage can be achieved by integrating generation and storage within one system. This avoids the expense and inefficiency of transforming primary energy (e.g. wind, solar, nuclear) into electricity, then into an intermediate form, and later back to electricity. For example, the heat produced by a concentrating solar power plant can be stored at far lower cost and with lower losses than producing electricity directly and operating a standalone electricity store. A broad range of opportunities exist for low-carbon GIES systems, in both renewable and nuclear applications. The research team's expertise in wind, nuclear, and liquefied air storage will be applied directly to GIES systems in all three. The project will also establish a framework for the wider significance of GIES to energy systems. Technical and thermodynamic metrics that characterise high performing GIES systems will be developed, and used to compare with standalone generation and storage equivalents. The theoretical groundwork laid by this research will have applications far beyond the current project. Opportunities for current and future technologies will be mapped out and publicised, supporting and accelerating further work in the field. The deployment and operation of such technologies will be modelled by means of a pragmatic real options economic analysis. The unique policy and economic considerations of fusing generation and storage will be reviewed in detail, considering challenges and proposing solutions to regulatory and financial hurdles. Taken in concert, these will determine the value and scope for substantial deployment of GIES systems. In bringing to light the potential of the class of GIES systems, the research team will rectify a gap in energy systems thinking, in time to inform what will be a multi-billion pound expenditure in the coming decade. By providing the tools to analyse and deploy these systems, the research will open up a new avenue for cost-effective flexibility across the energy infrastructure of the UK and other regions worldwide.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/R003106/1
    Funder Contribution: 348,956 GBP

    The Rationale: We need freshwater for agriculture, industry and human existence. Access to good quality water is essential for sustainable socio-economic growth. Freshwater ecosystems are finite and globally threatened by increasing environmental degradation caused by destructive land-use and water-management practices and increasing industrialization. The scale of socio-economic activities, urbanisation, industrial operations and agricultural practices in India has reached the point where watersheds across India are being severely impacted. For example, gross organic pollution in India's freshwater resources are common place, resulting in severe toxic burdens, depletion of dissolved oxygen levels and severe pathogenic contamination. Eutrophication, arising from enrichment with nutrients caused by sewage and agro-industrial effluents and agricultural run-off, greatly impact on lakes and impounded rivers. Groundwater bodies are susceptible to leaching from waste dumps, mining and industrial discharges. Finally, despite their potential threat, the distribution, scale and levels of newly emerging water contaminants, e.g. endocrine disrupting chemicals (EDCs), are largely unknown. We must address the consequences of both present and future contaminant threats to water catchments if we are to provide action that provide solutions at all levels. The implementation of sensors for monitoring important biological and chemical parameters, through time and space, is the indispensable basis for accurate assessments whilst the deployment of state-of-the-art water treatment technologies for the removal of pollutants will enhance water protection and security. The Proposition: Firstly; improve our ability to determine the presence of pollution in water courses and the development of novel sensing approaches to help reduce or prevent pollution at source. We will do this via; The deployment and implementation of new in situ fluorescence sensors that have been developed by UWE, Bristol and Chelsea Technology Group (CTG) as part of a current NERC Grant (NE/K007572/1) The development of a novel bacterial bio-sensor using bio-reporter strains that was first conceived in India (Bose Institute), for the detection of endocrine disrupting chemicals in water bodies and effluents. Secondly; develop novel approaches to reduce or prevent pollution detected above at the source via; The development of novel off-grid treatment technologies, for rural and urban areas, to remove pollutants (sensed above) based on ultrafiltration membrane technology and bacterial remediation using bio-reactors. Longer-term Impact: To understand the impact of sewage contamination and the bacterial quality of freshwater catchments in India. To quantify changes in sewage contamination levels through time and space and to understand how these changes are affected by land use and effluent discharges. Our fluorescence sensor will be used to identify, monitor and detect bacterial contamination from sewage discharges entering waters at a catchment scale, including urbanised areas. To develop a bacterial sensor, using bio-reporter strains, for the detection of endocrine disrupting chemicals in discharges and freshwaters. We will also assess the feasibility of the catabolic potential of these biosensor strains for bioreactor-based remediation of EDCs and implement an off-grid UF membrane technology platform for the treatment of bacterial contamination. This UK/India partnership will involve the deployment of UK developed technologies in India and the subsequent development of Indian inspired sensors and treatment approaches in the UK.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.