Powered by OpenAIRE graph
Found an issue? Give us feedback

Helmholtz Association of German Research Centres

Country: Germany

Helmholtz Association of German Research Centres

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
1,536 Projects, page 1 of 308
  • Funder: SNSF Project Code: 143640
    Funder Contribution: 21,610
    more_vert
  • Funder: EC Project Code: 841663
    Overall Budget: 162,806 EURFunder Contribution: 162,806 EUR

    Understanding Earth’s climate system is a major aim of the H2020 work programme. The chemical weathering of silicate and carbonate minerals is a key component of Earth’s climate system by exchanging large volumes of carbon between atmospheric and geologic reservoirs. Commonly, weathering models focus on the steady production, chemical alteration, and erosion of regolith and soil. However, the majority of fresh, weatherable sediment on Earth’s surface is produced in active mountain ranges where unsteady bedrock landsliding is the dominant erosion process. There, existing weathering models do not apply. The lack of data and models for chemical weathering in bedrock landslide deposits presents a major knowledge gap that limits our predictions of weathering dynamics and, ultimately, our understanding of Earth’s climate system. The goal of WetSlide is to quantify the impact of landslide erosion on chemical weathering fluxes from mountain ranges with three research objectives: 1) Assess millennial-scale variations of weathering rates in landslide deposits with a unique dataset of landslide-seepage-water chemistry from New Zealand; 2) Quantify erosion timescales of landslide deposits by measuring and compiling deposit volumes of dated landslides; 3) Develop and calibrate a model for weathering in landslides based on data from 1-2. This model will be combined with a regolith weathering model to estimate landscape-scale weathering fluxes. By providing the first quantitative study of weathering in landslide deposits, WetSlide has the potential to re-define the impact of mountain belt uplift on the inorganic carbon cycle and to drive a step-change in the understanding of global chemical weathering dynamics. Moreover, interdisciplinary training by experts at two world-leading research institutions will shape a competitive young researcher with a rare combination of skills who can effectively contribute to EU research excellence in integrative natural sciences.

    visibility14
    visibilityviews14
    downloaddownloads21
    Powered by Usage counts
    more_vert
  • Funder: EC Project Code: 647995
    Overall Budget: 1,854,750 EURFunder Contribution: 1,854,750 EUR

    This project aims at predicting the energy scale of cosmological inflation and the strength of the inflationary gravitational wave signal from string theory. Observations of the cosmic microwave background (CMB) temperature fluctuations have drastically changed cosmology into quantitative science. The results provide strong evidence for two phases of accelerated expansion in our Universe. The late-time phase of acceleration, termed ’dark energy’, is consistent with an extremely small positive cosmological constant, while the evidence for a very early phase of acceleration increasingly supports cosmological inflation. Very recently, the BICEP2 experiment reported the detection of B-mode polarization in the CMB. Pending future corroboration, this may correspond to a detection of primordial gravitational waves with a fractional power of about 10% of the CMB temperature fluctuations. In the context of inflation this implies an inflationary energy scale close to the scale of Grand Unification, and a large field excursion of the inflationary scalar field. Hence, the inflationary scalar potential needs symmetries to protect it from dangerous quantum corrections. These features strongly motivate the study of high-scale inflation in string theory as a candidate theory of quantum gravity. We will determine the range of predictions for large-field high-scale inflation in string theory driven by the mechanism of axion monodromy, which was co-discovered by the PI. For this purpose, we will establish a catalog of primary sources for large field ranges from axion monodromy in combination with assistance effects from multiple axion fields. We will analyze the generic effects of the interplay between large-field models of inflation in string theory with its necessary prerequisite, moduli stabilization. Finally, we will study the distribution of inflation mechanisms among the many vacua of string theory. In combination, this gives us a first chance to make string theory testable.

    visibility3
    visibilityviews3
    downloaddownloads8
    Powered by Usage counts
    more_vert
  • Funder: EC Project Code: 891418
    Overall Budget: 174,806 EURFunder Contribution: 174,806 EUR

    The interaction between metals and microscopic plant-like organisms called phytoplankton is a key link to global carbon balance. More than a half of atmospheric CO2 on earth is taken up by phytoplankton, but iron (Fe) limits their growth in large regions of the oceans. Ongoing ocean acidification and global warming will influence Fe-stress in marine phytoplankton and hence the biological carbon fixation. Key existing knowledge gaps are the pathways by which phytoplankton take up Fe, and influences of chemical conditions in the microenvironment surrounding algal cells (i.e., phycosphere) on Fe speciation and bioavailability. This knowledge represents an impediment to understanding the complex effects of climate change on Fe uptake and oceanic carbon fixation. The project ‘Phycosphere Fe’ will determine chemical conditions and Fe speciation in the phycosphere of model phytoplankton species, quantify the role of phycosphere Fe speciation in Fe bioavailability, and investigate influences of climate change (i.e., warming and increased CO2) on Fe-algae interfacial processes. The project is key to the assessment of Fe bioavailability, growth and CO2 fixation of phytoplankton in current and future oceans, which make key contributions to global carbon sequestration. The project will improve our ability to model phytoplankton dynamics and predict biological carbon fixation in a changing ocean.

    more_vert
  • Funder: EC Project Code: 678215
    Overall Budget: 1,317,500 EURFunder Contribution: 1,317,500 EUR

    In 2012, the ATLAS and CMS experiments at the Large Hadron Collider at CERN announced a ground-breaking discovery: both experiments observed a new particle. Subsequent measurements confirmed it to be a Higgs boson. In the Standard Model (SM) of particle physics, which describes the known elementary particles and their interactions, as well as in many extensions of the SM, the Higgs boson is fundamentally linked to the question of how elementary particles acquire mass. A thorough program of measurements is necessary to determine if this particle has indeed the properties of a Higgs boson as predicted by the SM or one of its extensions, and to gain a complete understanding of the mass generation for elementary particles. Studies of the Higgs sector now open a unique window to the discovery of New Physics. The aim of the presented project is to perform a detailed analysis of the Higgs differential distributions measured in Higgs decays to diphotons and to four leptons, using the data collected by the ATLAS experiment between 2015 and 2021. These distributions are sensitive to effects from New Physics and will be confronted with precise theoretical predictions. In this way, the indirect extraction of Higgs couplings and the search for effects from new heavy particles can lead to a discovery of New Physics. The detailed analysis of differential distributions goes substantially beyond the standard analyses based on measured event counts. A dedicated program is needed to achieve these goals. With an ERC Starting Grant, I will assemble a team to make decisive contributions to these challenging measurements and build a unique research program. As a former leader of the ATLAS Higgs-to-diphoton physics group and current leader of the electron and photon reconstruction group I am in an ideal position to establish a strong research team. This team will build on the important contributions to the Higgs boson discovery and property studies made by my Young Investigators Group.

    visibility217
    visibilityviews217
    downloaddownloads269
    Powered by Usage counts
    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.