Powered by OpenAIRE graph
Found an issue? Give us feedback

Microtest

MICROTEST SRL
Country: Italy
2 Projects, page 1 of 1
  • Funder: European Commission Project Code: 821883
    Overall Budget: 3,384,450 EURFunder Contribution: 3,384,450 EUR

    The EFESOS project aims to develop and evaluate a cutting-edge ASIC technology for space applications. More specifically, departing from the characterization of the commercial technology, a radiation-hardened-by-design digital library and a set of complex analog IP cores (ADC, DAC, SERDES and PLL) will be implemented using the 22FDX process from Global Foundries, available at their production facility in Dresden (Germany). A complete electrical, environmental (radiation) and reliability validation of the technology will be performed, and the resulting fully-European design flow will be evaluated according to the ESCC standards with a representative sample chip. The 22FDX is a 22nm Fully-Depleted SOI technology providing up to 40% die scaling relative to the standard 28nm node, nearly 70% lower power than 28nm and similar power efficiency to FinFET technology. EFESOS responds to the increasing demand of the European space industry of more integrated ASICs at higher performance, and greatly contributes to the strategic goal of achieving non-dependence on critical technologies. The project will provide Europe with a technical capability beyond the current state-of-the-art, thus becoming a global reference in space microelectronics.

    more_vert
  • Funder: European Commission Project Code: 101004366
    Overall Budget: 3,717,040 EURFunder Contribution: 2,999,950 EUR

    The recent developments in high-power Hall thruster systems, thanks to the optimal combination of performance and reliability, are enabling a wide set of mission scenarios. These technological advantages, coupled with the increasing availability of power onboard satellite platforms, are encouraging several spacecraft manufacturers to focus on the implementation of high-power Hall thruster systems. The most promising scenarios envisage the introduction of a new class of service platforms characterized by versatility and a high level of reusability, the so-called Space Tug. Other applications, nowadays of particular interest, are the active debris removal to mitigate the possible collision risks. Besides, several exploration and scientific missions, such as Mars Sample Return, contemplate high power electric propulsion as the main propulsion system. Despite these potential advantages, several factors have limited the possibility of reaching qualified status for these systems, such as huge costs and availability of test facility. ASPIRE aims to increase the TRL of 20kW Hall Thruster system up to 6 by exploiting results obtained within CHEOPS. The project will cover many aspects, from mission scenarios analysis and satellite architecture consolidation to thruster unit TRL raise to 7 and enabling reduced-cost qualification. To keep operational and development costs as low as possible, krypton is maintained as baseline propellant. The ASPIRE project also aims at augmenting the numerical modelling capability necessary for qualification of high-power EP systems, which lacks in Europe. The numerical models, developed and refined by three academic partners in the frame of this project, will be validated with the data gathered in more than 1000 hours of firing with Kr. Artificial intelligence is used to develop a novel simulation-aided qualification strategy, representing an exclusive European asset for the foreseen qualification and flight in the 2020-2030 decade.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.