search
The following results are related to SDSN - Greece. Are you interested to view more results? Visit OpenAIRE - Explore.
27 Research products

  • SDSN - Greece
  • Open Access
  • National Science Foundation
  • IT

10
arrow_drop_down
Relevance
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Donato Giovannelli; Giuseppe d’Errico; Federica Fiorentino; Daniele Fattorini; +7 Authors

    Pockmarks are crater-like depression on the seafloor associated with hydrocarbon ascent through muddy sediments in continental shelves around the world. In this study, we examine the diversity and distribution of benthic microbial communities at shallow-water pockmarks adjacent to the Middle Adriatic Ridge. We integrate microbial diversity data with characterization of local hydrocarbons concentrations and sediment geochemistry. Our results suggest these pockmarks are enriched in sedimentary hydrocarbons, and host a microbial community dominated by Bacteria, even in deeper sediment layers. Pockmark sediments showed higher prokaryotic abundance and biomass than surrounding sediments, potentially due to the increased availability of organic matter and higher concentrations of hydrocarbons linked to pockmark activity. Prokaryotic diversity analyses showed that the microbial communities of these shallow- water pockmarks are unique, and comprised phylotypes associated with the cycling of sulfur and nitrate compounds, as well as numerous know hydrocarbon degraders. Altogether, this study suggests that shallow-water pockmark habitats enhance the diversity of the benthic prokaryotic biosphere by providing specialized environmental niches.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Europe PubMed Centra...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Europe PubMed Central
    Article . 2016
    Data sources: PubMed Central
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Microbiology
    Article . 2016 . Peer-reviewed
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Microbiology
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2016
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    21
    citations21
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Europe PubMed Centra...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Europe PubMed Central
      Article . 2016
      Data sources: PubMed Central
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Microbiology
      Article . 2016 . Peer-reviewed
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Microbiology
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2016
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Heery, Eliza C.; Bishop, Melanie J.; Critchley, Lincoln P.; Bugnot, Ana B.; +11 Authors

    Extensive development and construction in marine and coastal systems is driving a phenomenon known as “ocean sprawl”. Ocean sprawl removes or transforms marine habitats through the addition of artificial structures and some of the most significant impacts are occurring in sedimentary environments. Marine sediments have substantial social, ecological, and economic value, as they are rich in biodiversity, crucial to fisheries productivity, and major sites of nutrient transformation. Yet the impact of ocean sprawl on sedimentary environments has largely been ignored. Here we review current knowledge of the impacts to sedimentary ecosystems arising from artificial structures.\ud \ud Artificial structures alter the composition and abundance of a wide variety of sediment-dependent taxa, including microbes, invertebrates, and benthic-feeding fishes. The effects vary by structure design and configuration, as well as the physical, chemical, and biological characteristics of the environment in which structures are placed. The mechanisms driving effects from artificial structures include placement loss, habitat degradation, modification of sound and light conditions, hydrodynamic changes, organic enrichment and material fluxes, contamination, and altered biotic interactions. Most studies have inferred mechanism based on descriptive work, comparing biological and physical processes at various distances from structures. Further experimental studies are needed to identify the relative importance of multiple mechanisms and to demonstrate causal relationships. Additionally, past studies have focused on impacts at a relatively small scale, and independently of other development that is occurring. There is need to quantify large-scale and cumulative effects on sedimentary ecosystems as artificial structures proliferate. We highlight the importance for comprehensive monitoring using robust survey designs and outline research strategies needed to understand, value, and protect marine sedimentary ecosystems in the face of a rapidly changing environment.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CORE (RIOXX-UK Aggre...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    CORE (RIOXX-UK Aggregator)
    Article . 2017
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    171
    citations171
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    download35
    downloaddownloads35
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CORE (RIOXX-UK Aggre...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      CORE (RIOXX-UK Aggregator)
      Article . 2017
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Frank E. Muller-Karger; Patricia Miloslavich; Patricia Miloslavich; Nicholas J. Bax; +39 Authors

    Measurements of the status and trends of key indicators for the ocean and marine life are required to inform policy and management in the context of growing human uses of marine resources, coastal development, and climate change. Two synergistic efforts identify specific priority variables for monitoring: Essential Ocean Variables (EOVs) through the Global Ocean Observing System (GOOS), and Essential Biodiversity Variables (EBVs) from the Group on Earth Observations Biodiversity Observation Network (GEO BON) (see Data Sheet 1 in Supplementary Materials for a glossary of acronyms). Both systems support reporting against internationally agreed conventions and treaties. GOOS, established under the auspices of the Intergovernmental Oceanographic Commission (IOC), plays a leading role in coordinating global monitoring of the ocean and in the definition of EOVs. GEO BON is a global biodiversity observation network that coordinates observations to enhance management of the world's biodiversity and promote both the awareness and accounting of ecosystem services. Convergence and agreement between these two efforts are required to streamline existing and new marine observation programs to advance scientific knowledge effectively and to support the sustainable use and management of ocean spaces and resources. In this context, the Marine Biodiversity Observation Network (MBON), a thematic component of GEO BON, is collaborating with GOOS, the Ocean Biogeographic Information System (OBIS), and the Integrated Marine Biosphere Research (IMBeR) project to ensure that EBVs and EOVs are complementary, representing alternative uses of a common set of scientific measurements. This work is informed by the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM), an intergovernmental body of technical experts that helps international coordination on best practices for observing, data management and services, combined with capacity development expertise. Characterizing biodiversity and understanding its drivers will require incorporation of observations from traditional and molecular taxonomy, animal tagging and tracking efforts, ocean biogeochemistry, and ocean observatory initiatives including the deep ocean and seafloor. The partnership between large-scale ocean observing and product distribution initiatives (MBON, OBIS, JCOMM, and GOOS) is an expedited, effective way to support international policy-level assessments (e.g., the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services or IPBES), along with the implementation of international development goals (e.g., the United Nations Sustainable Development Goals).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Marine ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Marine Science
    Other literature type . Article . 2018 . Peer-reviewed
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Marine Science
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Horizon / Pleins textes
    Other literature type . 2018
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    181
    citations181
    popularityTop 1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Marine ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Marine Science
      Other literature type . Article . 2018 . Peer-reviewed
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Marine Science
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Horizon / Pleins textes
      Other literature type . 2018
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Katrianne Lehtipalo; Linda Rondo; Jenni Kontkanen; Siegfried Schobesberger; +65 Authors

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere. The growth rates of freshly formed aerosol particles influence what fraction of these can reach sizes large enough to affect cloud formation and climate. Here, the authors show that the nano-particle growth in a sulphuric acid containing system can be enhanced by the presence of ions or small acid-base clusters.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Permanent Hosting, A...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Europe PubMed Central
    Article . 2016
    Data sources: PubMed Central
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Caltech Authors
    Article . 2016 . Peer-reviewed
    Data sources: Caltech Authors
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Nature Communications
    Article . 2016
    Data sources: DOAJ-Articles
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    CERN Document Server
    Other literature type . 2016
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Nature Communications
    Article
    License: CC BY
    Data sources: UnpayWall
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    125
    citations125
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    visibility5
    visibilityviews5
    downloaddownloads6
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Permanent Hosting, A...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Europe PubMed Central
      Article . 2016
      Data sources: PubMed Central
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Caltech Authors
      Article . 2016 . Peer-reviewed
      Data sources: Caltech Authors
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Nature Communications
      Article . 2016
      Data sources: DOAJ-Articles
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      CERN Document Server
      Other literature type . 2016
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Nature Communications
      Article
      License: CC BY
      Data sources: UnpayWall
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Alain Destexhe; Chaitanya Chintaluri; Dorottya Cserpán; Zachary P. Kilpatrick; +189 Authors

    Table of contents A1 Functional advantages of cell-type heterogeneity in neural circuits Tatyana O. Sharpee A2 Mesoscopic modeling of propagating waves in visual cortex Alain Destexhe A3 Dynamics and biomarkers of mental disorders Mitsuo Kawato F1 Precise recruitment of spiking output at theta frequencies requires dendritic h-channels in multi-compartment models of oriens-lacunosum/moleculare hippocampal interneurons Vladislav Sekulić, Frances K. Skinner F2 Kernel methods in reconstruction of current sources from extracellular potentials for single cells and the whole brains Daniel K. Wójcik, Chaitanya Chintaluri, Dorottya Cserpán, Zoltán Somogyvári F3 The synchronized periods depend on intracellular transcriptional repression mechanisms in circadian clocks. Jae Kyoung Kim, Zachary P. Kilpatrick, Matthew R. Bennett, Kresimir Josić O1 Assessing irregularity and coordination of spiking-bursting rhythms in central pattern generators Irene Elices, David Arroyo, Rafael Levi, Francisco B. Rodriguez, Pablo Varona O2 Regulation of top-down processing by cortically-projecting parvalbumin positive neurons in basal forebrain Eunjin Hwang, Bowon Kim, Hio-Been Han, Tae Kim, James T. McKenna, Ritchie E. Brown, Robert W. McCarley, Jee Hyun Choi O3 Modeling auditory stream segregation, build-up and bistability James Rankin, Pamela Osborn Popp, John Rinzel O4 Strong competition between tonotopic neural ensembles explains pitch-related dynamics of auditory cortex evoked fields Alejandro Tabas, André Rupp, Emili Balaguer-Ballester O5 A simple model of retinal response to multi-electrode stimulation Matias I. Maturana, David B. Grayden, Shaun L. Cloherty, Tatiana Kameneva, Michael R. Ibbotson, Hamish Meffin O6 Noise correlations in V4 area correlate with behavioral performance in visual discrimination task Veronika Koren, Timm Lochmann, Valentin Dragoi, Klaus Obermayer O7 Input-location dependent gain modulation in cerebellar nucleus neurons Maria Psarrou, Maria Schilstra, Neil Davey, Benjamin Torben-Nielsen, Volker Steuber O8 Analytic solution of cable energy function for cortical axons and dendrites Huiwen Ju, Jiao Yu, Michael L. Hines, Liang Chen, Yuguo Yu O9 C. elegans interactome: interactive visualization of Caenorhabditis elegans worm neuronal network Jimin Kim, Will Leahy, Eli Shlizerman O10 Is the model any good? Objective criteria for computational neuroscience model selection Justas Birgiolas, Richard C. Gerkin, Sharon M. Crook O11 Cooperation and competition of gamma oscillation mechanisms Atthaphon Viriyopase, Raoul-Martin Memmesheimer, Stan Gielen O12 A discrete structure of the brain waves Yuri Dabaghian, Justin DeVito, Luca Perotti O13 Direction-specific silencing of the Drosophila gaze stabilization system Anmo J. Kim, Lisa M. Fenk, Cheng Lyu, Gaby Maimon O14 What does the fruit fly think about values? A model of olfactory associative learning Chang Zhao, Yves Widmer, Simon Sprecher,Walter Senn O15 Effects of ionic diffusion on power spectra of local field potentials (LFP) Geir Halnes, Tuomo Mäki-Marttunen, Daniel Keller, Klas H. Pettersen,Ole A. Andreassen, Gaute T. Einevoll O16 Large-scale cortical models towards understanding relationship between brain structure abnormalities and cognitive deficits Yasunori Yamada O17 Spatial coarse-graining the brain: origin of minicolumns Moira L. Steyn-Ross, D. Alistair Steyn-Ross O18 Modeling large-scale cortical networks with laminar structure Jorge F. Mejias, John D. Murray, Henry Kennedy, Xiao-Jing Wang O19 Information filtering by partial synchronous spikes in a neural population Alexandra Kruscha, Jan Grewe, Jan Benda, Benjamin Lindner O20 Decoding context-dependent olfactory valence in Drosophila Laurent Badel, Kazumi Ohta, Yoshiko Tsuchimoto, Hokto Kazama P1 Neural network as a scale-free network: the role of a hub B. Kahng P2 Hemodynamic responses to emotions and decisions using near-infrared spectroscopy optical imaging Nicoladie D. Tam P3 Phase space analysis of hemodynamic responses to intentional movement directions using functional near-infrared spectroscopy (fNIRS) optical imaging technique Nicoladie D.Tam, Luca Pollonini, George Zouridakis P4 Modeling jamming avoidance of weakly electric fish Jaehyun Soh, DaeEun Kim P5 Synergy and redundancy of retinal ganglion cells in prediction Minsu Yoo, S. E. Palmer P6 A neural field model with a third dimension representing cortical depth Viviana Culmone, Ingo Bojak P7 Network analysis of a probabilistic connectivity model of the Xenopus tadpole spinal cord Andrea Ferrario, Robert Merrison-Hort, Roman Borisyuk P8 The recognition dynamics in the brain Chang Sub Kim P9 Multivariate spike train analysis using a positive definite kernel Taro Tezuka P10 Synchronization of burst periods may govern slow brain dynamics during general anesthesia Pangyu Joo P11 The ionic basis of heterogeneity affects stochastic synchrony Young-Ah Rho, Shawn D. Burton, G. Bard Ermentrout, Jaeseung Jeong, Nathaniel N. Urban P12 Circular statistics of noise in spike trains with a periodic component Petr Marsalek P14 Representations of directions in EEG-BCI using Gaussian readouts Hoon-Hee Kim, Seok-hyun Moon, Do-won Lee, Sung-beom Lee, Ji-yong Lee, Jaeseung Jeong P15 Action selection and reinforcement learning in basal ganglia during reaching movements Yaroslav I. Molkov, Khaldoun Hamade, Wondimu Teka, William H. Barnett, Taegyo Kim, Sergey Markin, Ilya A. Rybak P17 Axon guidance: modeling axonal growth in T-Junction assay Csaba Forro, Harald Dermutz, László Demkó, János Vörös P19 Transient cell assembly networks encode persistent spatial memories Yuri Dabaghian, Andrey Babichev P20 Theory of population coupling and applications to describe high order correlations in large populations of interacting neurons Haiping Huang P21 Design of biologically-realistic simulations for motor control Sergio Verduzco-Flores P22 Towards understanding the functional impact of the behavioural variability of neurons Filipa Dos Santos, Peter Andras P23 Different oscillatory dynamics underlying gamma entrainment deficits in schizophrenia Christoph Metzner, Achim Schweikard, Bartosz Zurowski P24 Memory recall and spike frequency adaptation James P. Roach, Leonard M. Sander, Michal R. Zochowski P25 Stability of neural networks and memory consolidation preferentially occur near criticality Quinton M. Skilling, Nicolette Ognjanovski, Sara J. Aton, Michal Zochowski P26 Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems Sheng-Jun Wang, Guang Ouyang, Jing Guang, Mingsha Zhang, K. Y. Michael Wong, Changsong Zhou P27 Neurofield: a C++ library for fast simulation of 2D neural field models Peter A. Robinson, Paula Sanz-Leon, Peter M. Drysdale, Felix Fung, Romesh G. Abeysuriya, Chris J. Rennie, Xuelong Zhao P28 Action-based grounding: Beyond encoding/decoding in neural code Yoonsuck Choe, Huei-Fang Yang P29 Neural computation in a dynamical system with multiple time scales Yuanyuan Mi, Xiaohan Lin, Si Wu P30 Maximum entropy models for 3D layouts of orientation selectivity Joscha Liedtke, Manuel Schottdorf, Fred Wolf P31 A behavioral assay for probing computations underlying curiosity in rodents Yoriko Yamamura, Jeffery R. Wickens P32 Using statistical sampling to balance error function contributions to optimization of conductance-based models Timothy Rumbell, Julia Ramsey, Amy Reyes, Danel Draguljić, Patrick R. Hof, Jennifer Luebke, Christina M. Weaver P33 Exploration and implementation of a self-growing and self-organizing neuron network building algorithm Hu He, Xu Yang, Hailin Ma, Zhiheng Xu, Yuzhe Wang P34 Disrupted resting state brain network in obese subjects: a data-driven graph theory analysis Kwangyeol Baek, Laurel S. Morris, Prantik Kundu, Valerie Voon P35 Dynamics of cooperative excitatory and inhibitory plasticity Everton J. Agnes, Tim P. Vogels P36 Frequency-dependent oscillatory signal gating in feed-forward networks of integrate-and-fire neurons William F. Podlaski, Tim P. Vogels P37 Phenomenological neural model for adaptation of neurons in area IT Martin Giese, Pradeep Kuravi, Rufin Vogels P38 ICGenealogy: towards a common topology of neuronal ion channel function and genealogy in model and experiment Alexander Seeholzer, William Podlaski, Rajnish Ranjan, Tim Vogels P39 Temporal input discrimination from the interaction between dynamic synapses and neural subthreshold oscillations Joaquin J. Torres, Fabiano Baroni, Roberto Latorre, Pablo Varona P40 Different roles for transient and sustained activity during active visual processing Bart Gips, Eric Lowet, Mark J. Roberts, Peter de Weerd, Ole Jensen, Jan van der Eerden P41 Scale-free functional networks of 2D Ising model are highly robust against structural defects: neuroscience implications Abdorreza Goodarzinick, Mohammad D. Niry, Alireza Valizadeh P42 High frequency neuron can facilitate propagation of signal in neural networks Aref Pariz, Shervin S. Parsi, Alireza Valizadeh P43 Investigating the effect of Alzheimer’s disease related amyloidopathy on gamma oscillations in the CA1 region of the hippocampus Julia M. Warburton, Lucia Marucci, Francesco Tamagnini, Jon Brown, Krasimira Tsaneva-Atanasova P44 Long-tailed distributions of inhibitory and excitatory weights in a balanced network with eSTDP and iSTDP Florence I. Kleberg, Jochen Triesch P45 Simulation of EMG recording from hand muscle due to TMS of motor cortex Bahar Moezzi, Nicolangelo Iannella, Natalie Schaworonkow, Lukas Plogmacher, Mitchell R. Goldsworthy, Brenton Hordacre, Mark D. McDonnell, Michael C. Ridding, Jochen Triesch P46 Structure and dynamics of axon network formed in primary cell culture Martin Zapotocky, Daniel Smit, Coralie Fouquet, Alain Trembleau P47 Efficient signal processing and sampling in random networks that generate variability Sakyasingha Dasgupta, Isao Nishikawa, Kazuyuki Aihara, Taro Toyoizumi P48 Modeling the effect of riluzole on bursting in respiratory neural networks Daniel T. Robb, Nick Mellen, Natalia Toporikova P49 Mapping relaxation training using effective connectivity analysis Rongxiang Tang, Yi-Yuan Tang P50 Modeling neuron oscillation of implicit sequence learning Guangsheng Liang, Seth A. Kiser, James H. Howard, Jr., Yi-Yuan Tang P51 The role of cerebellar short-term synaptic plasticity in the pathology and medication of downbeat nystagmus Julia Goncharenko, Neil Davey, Maria Schilstra, Volker Steuber P52 Nonlinear response of noisy neurons Sergej O. Voronenko, Benjamin Lindner P53 Behavioral embedding suggests multiple chaotic dimensions underlie C. elegans locomotion Tosif Ahamed, Greg Stephens P54 Fast and scalable spike sorting for large and dense multi-electrodes recordings Pierre Yger, Baptiste Lefebvre, Giulia Lia Beatrice Spampinato, Elric Esposito, Marcel Stimberg et Olivier Marre P55 Sufficient sampling rates for fast hand motion tracking Hansol Choi, Min-Ho Song P56 Linear readout of object manifolds SueYeon Chung, Dan D. Lee, Haim Sompolinsky P57 Differentiating models of intrinsic bursting and rhythm generation of the respiratory pre-Bötzinger complex using phase response curves Ryan S. Phillips, Jeffrey Smith P58 The effect of inhibitory cell network interactions during theta rhythms on extracellular field potentials in CA1 hippocampus Alexandra Pierri Chatzikalymniou, Katie Ferguson, Frances K. Skinner P59 Expansion recoding through sparse sampling in the cerebellar input layer speeds learning N. Alex Cayco Gajic, Claudia Clopath, R. Angus Silver P60 A set of curated cortical models at multiple scales on Open Source Brain Padraig Gleeson, Boris Marin, Sadra Sadeh, Adrian Quintana, Matteo Cantarelli, Salvador Dura-Bernal, William W. Lytton, Andrew Davison, R. Angus Silver P61 A synaptic story of dynamical information encoding in neural adaptation Luozheng Li, Wenhao Zhang, Yuanyuan Mi, Dahui Wang, Si Wu P62 Physical modeling of rule-observant rodent behavior Youngjo Song, Sol Park, Ilhwan Choi, Jaeseung Jeong, Hee-sup Shin P64 Predictive coding in area V4 and prefrontal cortex explains dynamic discrimination of partially occluded shapes Hannah Choi, Anitha Pasupathy, Eric Shea-Brown P65 Stability of FORCE learning on spiking and rate-based networks Dongsung Huh, Terrence J. Sejnowski P66 Stabilising STDP in striatal neurons for reliable fast state recognition in noisy environments Simon M. Vogt, Arvind Kumar, Robert Schmidt P67 Electrodiffusion in one- and two-compartment neuron models for characterizing cellular effects of electrical stimulation Stephen Van Wert, Steven J. Schiff P68 STDP improves speech recognition capabilities in spiking recurrent circuits parameterized via differential evolution Markov Chain Monte Carlo Richard Veale, Matthias Scheutz P69 Bidirectional transformation between dominant cortical neural activities and phase difference distributions Sang Wan Lee P70 Maturation of sensory networks through homeostatic structural plasticity Júlia Gallinaro, Stefan Rotter P71 Corticothalamic dynamics: structure, number of solutions and stability of steady-state solutions in the space of synaptic couplings Paula Sanz-Leon, Peter A. Robinson P72 Optogenetic versus electrical stimulation of the parkinsonian basal ganglia. Computational study Leonid L. Rubchinsky, Chung Ching Cheung, Shivakeshavan Ratnadurai-Giridharan P73 Exact spike-timing distribution reveals higher-order interactions of neurons Safura Rashid Shomali, Majid Nili Ahmadabadi, Hideaki Shimazaki, S. Nader Rasuli P74 Neural mechanism of visual perceptual learning using a multi-layered neural network Xiaochen Zhao, Malte J. Rasch P75 Inferring collective spiking dynamics from mostly unobserved systems Jens Wilting, Viola Priesemann P76 How to infer distributions in the brain from subsampled observations Anna Levina, Viola Priesemann P77 Influences of embedding and estimation strategies on the inferred memory of single spiking neurons Lucas Rudelt, Joseph T. Lizier, Viola Priesemann P78 A nearest-neighbours based estimator for transfer entropy between spike trains Joseph T. Lizier, Richard E. Spinney, Mikail Rubinov, Michael Wibral, Viola Priesemann P79 Active learning of psychometric functions with multinomial logistic models Ji Hyun Bak, Jonathan Pillow P81 Inferring low-dimensional network dynamics with variational latent Gaussian process Yuan Zaho, Il Memming Park P82 Computational investigation of energy landscapes in the resting state subcortical brain network Jiyoung Kang, Hae-Jeong Park P83 Local repulsive interaction between retinal ganglion cells can generate a consistent spatial periodicity of orientation map Jaeson Jang, Se-Bum Paik P84 Phase duration of bistable perception reveals intrinsic time scale of perceptual decision under noisy condition Woochul Choi, Se-Bum Paik P85 Feedforward convergence between retina and primary visual cortex can determine the structure of orientation map Changju Lee, Jaeson Jang, Se-Bum Paik P86 Computational method classifying neural network activity patterns for imaging data Min Song, Hyeonsu Lee, Se-Bum Paik P87 Symmetry of spike-timing-dependent-plasticity kernels regulates volatility of memory Youngjin Park, Woochul Choi, Se-Bum Paik P88 Effects of time-periodic coupling strength on the first-spike latency dynamics of a scale-free network of stochastic Hodgkin-Huxley neurons Ergin Yilmaz, Veli Baysal, Mahmut Ozer P89 Spectral properties of spiking responses in V1 and V4 change within the trial and are highly relevant for behavioral performance Veronika Koren, Klaus Obermayer P90 Methods for building accurate models of individual neurons Daniel Saska, Thomas Nowotny P91 A full size mathematical model of the early olfactory system of honeybees Ho Ka Chan, Alan Diamond, Thomas Nowotny P92 Stimulation-induced tuning of ongoing oscillations in spiking neural networks Christoph S. Herrmann, Micah M. Murray, Silvio Ionta, Axel Hutt, Jérémie Lefebvre P93 Decision-specific sequences of neural activity in balanced random networks driven by structured sensory input Philipp Weidel, Renato Duarte, Abigail Morrison P94 Modulation of tuning induced by abrupt reduction of SST cell activity Jung H. Lee, Ramakrishnan Iyer, Stefan Mihalas P95 The functional role of VIP cell activation during locomotion Jung H. Lee, Ramakrishnan Iyer, Christof Koch, Stefan Mihalas P96 Stochastic inference with spiking neural networks Mihai A. Petrovici, Luziwei Leng, Oliver Breitwieser, David Stöckel, Ilja Bytschok, Roman Martel, Johannes Bill, Johannes Schemmel, Karlheinz Meier P97 Modeling orientation-selective electrical stimulation with retinal prostheses Timothy B. Esler, Anthony N. Burkitt, David B. Grayden, Robert R. Kerr, Bahman Tahayori, Hamish Meffin P98 Ion channel noise can explain firing correlation in auditory nerves Bahar Moezzi, Nicolangelo Iannella, Mark D. McDonnell P99 Limits of temporal encoding of thalamocortical inputs in a neocortical microcircuit Max Nolte, Michael W. Reimann, Eilif Muller, Henry Markram P100 On the representation of arm reaching movements: a computational model Antonio Parziale, Rosa Senatore, Angelo Marcelli P101 A computational model for investigating the role of cerebellum in acquisition and retention of motor behavior Rosa Senatore, Antonio Parziale, Angelo Marcelli P102 The emergence of semantic categories from a large-scale brain network of semantic knowledge K. Skiker, M. Maouene P103 Multiscale modeling of M1 multitarget pharmacotherapy for dystonia Samuel A. Neymotin, Salvador Dura-Bernal, Alexandra Seidenstein, Peter Lakatos, Terence D. Sanger, William W. Lytton P104 Effect of network size on computational capacity Salvador Dura-Bernal, Rosemary J. Menzies, Campbell McLauchlan, Sacha J. van Albada, David J. Kedziora, Samuel Neymotin, William W. Lytton, Cliff C. Kerr P105 NetPyNE: a Python package for NEURON to facilitate development and parallel simulation of biological neuronal networks Salvador Dura-Bernal, Benjamin A. Suter, Samuel A. Neymotin, Cliff C. Kerr, Adrian Quintana, Padraig Gleeson, Gordon M. G. Shepherd, William W. Lytton P107 Inter-areal and inter-regional inhomogeneity in co-axial anisotropy of Cortical Point Spread in human visual areas Juhyoung Ryu, Sang-Hun Lee P108 Two bayesian quanta of uncertainty explain the temporal dynamics of cortical activity in the non-sensory areas during bistable perception Joonwon Lee, Sang-Hun Lee P109 Optimal and suboptimal integration of sensory and value information in perceptual decision making Hyang Jung Lee, Sang-Hun Lee P110 A Bayesian algorithm for phoneme Perception and its neural implementation Daeseob Lim, Sang-Hun Lee P111 Complexity of EEG signals is reduced during unconsciousness induced by ketamine and propofol Jisung Wang, Heonsoo Lee P112 Self-organized criticality of neural avalanche in a neural model on complex networks Nam Jung, Le Anh Quang, Seung Eun Maeng, Tae Ho Lee, Jae Woo Lee P113 Dynamic alterations in connection topology of the hippocampal network during ictal-like epileptiform activity in an in vitro rat model Chang-hyun Park, Sora Ahn, Jangsup Moon, Yun Seo Choi, Juhee Kim, Sang Beom Jun, Seungjun Lee, Hyang Woon Lee P114 Computational model to replicate seizure suppression effect by electrical stimulation Sora Ahn, Sumin Jo, Eunji Jun, Suin Yu, Hyang Woon Lee, Sang Beom Jun, Seungjun Lee P115 Identifying excitatory and inhibitory synapses in neuronal networks from spike trains using sorted local transfer entropy Felix Goetze, Pik-Yin Lai P116 Neural network model for obstacle avoidance based on neuromorphic computational model of boundary vector cell and head direction cell Seonghyun Kim, Jeehyun Kwag P117 Dynamic gating of spike pattern propagation by Hebbian and anti-Hebbian spike timing-dependent plasticity in excitatory feedforward network model Hyun Jae Jang, Jeehyun Kwag P118 Inferring characteristics of input correlations of cells exhibiting up-down state transitions in the rat striatum Marko Filipović, Ramon Reig, Ad Aertsen, Gilad Silberberg, Arvind Kumar P119 Graph properties of the functional connected brain under the influence of Alzheimer’s disease Claudia Bachmann, Simone Buttler, Heidi Jacobs, Kim Dillen, Gereon R. Fink, Juraj Kukolja, Abigail Morrison P120 Learning sparse representations in the olfactory bulb Daniel Kepple, Hamza Giaffar, Dima Rinberg, Steven Shea, Alex Koulakov P121 Functional classification of homologous basal-ganglia networks Jyotika Bahuguna,Tom Tetzlaff, Abigail Morrison, Arvind Kumar, Jeanette Hellgren Kotaleski P122 Short term memory based on multistability Tim Kunze, Andre Peterson, Thomas Knösche P123 A physiologically plausible, computationally efficient model and simulation software for mammalian motor units Minjung Kim, Hojeong Kim P125 Decoding laser-induced somatosensory information from EEG Ji Sung Park, Ji Won Yeon, Sung-Phil Kim P126 Phase synchronization of alpha activity for EEG-based personal authentication Jae-Hwan Kang, Chungho Lee, Sung-Phil Kim P129 Investigating phase-lags in sEEG data using spatially distributed time delays in a large-scale brain network model Andreas Spiegler, Spase Petkoski, Matias J. Palva, Viktor K. Jirsa P130 Epileptic seizures in the unfolding of a codimension-3 singularity Maria L. Saggio, Silvan F. Siep, Andreas Spiegler, William C. Stacey, Christophe Bernard, Viktor K. Jirsa P131 Incremental dimensional exploratory reasoning under multi-dimensional environment Oh-hyeon Choung, Yong Jeong P132 A low-cost model of eye movements and memory in personal visual cognition Yong-il Lee, Jaeseung Jeong P133 Complex network analysis of structural connectome of autism spectrum disorder patients Su Hyun Kim, Mir Jeong, Jaeseung Jeong P134 Cognitive motives and the neural correlates underlying human social information transmission, gossip Jeungmin Lee, Jaehyung Kwon, Jerald D. Kralik, Jaeseung Jeong P135 EEG hyperscanning detects neural oscillation for the social interaction during the economic decision-making Jaehwan Jahng, Dong-Uk Hwang, Jaeseung Jeong P136 Detecting purchase decision based on hyperfrontality of the EEG Jae-Hyung Kwon, Sang-Min Park, Jaeseung Jeong P137 Vulnerability-based critical neurons, synapses, and pathways in the Caenorhabditis elegans connectome Seongkyun Kim, Hyoungkyu Kim, Jerald D. Kralik, Jaeseung Jeong P138 Motif analysis reveals functionally asymmetrical neurons in C. elegans Pyeong Soo Kim, Seongkyun Kim, Hyoungkyu Kim, Jaeseung Jeong P139 Computational approach to preference-based serial decision dynamics: do temporal discounting and working memory affect it? Sangsup Yoon, Jaehyung Kwon, Sewoong Lim, Jaeseung Jeong P141 Social stress induced neural network reconfiguration affects decision making and learning in zebrafish Choongseok Park, Thomas Miller, Katie Clements, Sungwoo Ahn, Eoon Hye Ji, Fadi A. Issa P142 Descriptive, generative, and hybrid approaches for neural connectivity inference from neural activity data JeongHun Baek, Shigeyuki Oba, Junichiro Yoshimoto, Kenji Doya, Shin Ishii P145 Divergent-convergent synaptic connectivities accelerate coding in multilayered sensory systems Thiago S. Mosqueiro, Martin F. Strube-Bloss, Brian Smith, Ramon Huerta P146 Swinging networks Michal Hadrava, Jaroslav Hlinka P147 Inferring dynamically relevant motifs from oscillatory stimuli: challenges, pitfalls, and solutions Hannah Bos, Moritz Helias P148 Spatiotemporal mapping of brain network dynamics during cognitive tasks using magnetoencephalography and deep learning Charles M. Welzig, Zachary J. Harper P149 Multiscale complexity analysis for the segmentation of MRI images Won Sup Kim, In-Seob Shin, Hyeon-Man Baek, Seung Kee Han P150 A neuro-computational model of emotional attention René Richter, Julien Vitay, Frederick Beuth, Fred H. Hamker P151 Multi-site delayed feedback stimulation in parkinsonian networks Kelly Toppin, Yixin Guo P152 Bistability in Hodgkin–Huxley-type equations Tatiana Kameneva, Hamish Meffin, Anthony N. Burkitt, David B. Grayden P153 Phase changes in postsynaptic spiking due to synaptic connectivity and short term plasticity: mathematical analysis of frequency dependency Mark D. McDonnell, Bruce P. Graham P154 Quantifying resilience patterns in brain networks: the importance of directionality Penelope J. Kale, Leonardo L. Gollo P155 Dynamics of rate-model networks with separate excitatory and inhibitory populations Merav Stern, L. F. Abbott P156 A model for multi-stable dynamics in action recognition modulated by integration of silhouette and shading cues Leonid A. Fedorov, Martin A. Giese P157 Spiking model for the interaction between action recognition and action execution Mohammad Hovaidi Ardestani, Martin Giese P158 Surprise-modulated belief update: how to learn within changing environments? Mohammad Javad Faraji, Kerstin Preuschoff, Wulfram Gerstner P159 A fast, stochastic and adaptive model of auditory nerve responses to cochlear implant stimulation Margriet J. van Gendt, Jeroen J. Briaire, Randy K. Kalkman, Johan H. M. Frijns P160 Quantitative comparison of graph theoretical measures of simulated and empirical functional brain networks Won Hee Lee, Sophia Frangou P161 Determining discriminative properties of fMRI signals in schizophrenia using highly comparative time-series analysis Ben D. Fulcher, Patricia H. P. Tran, Alex Fornito P162 Emergence of narrowband LFP oscillations from completely asynchronous activity during seizures and high-frequency oscillations Stephen V. Gliske, William C. Stacey, Eugene Lim, Katherine A. Holman, Christian G. Fink P163 Neuronal diversity in structure and function: cross-validation of anatomical and physiological classification of retinal ganglion cells in the mouse Jinseop S. Kim, Shang Mu, Kevin L. Briggman, H. Sebastian Seung, the EyeWirers P164 Analysis and modelling of transient firing rate changes in area MT in response to rapid stimulus feature changes Detlef Wegener, Lisa Bohnenkamp, Udo A. Ernst P165 Step-wise model fitting accounting for high-resolution spatial measurements: construction of a layer V pyramidal cell model with reduced morphology Tuomo Mäki-Marttunen, Geir Halnes, Anna Devor, Christoph Metzner, Anders M. Dale, Ole A. Andreassen, Gaute T. Einevoll P166 Contributions of schizophrenia-associated genes to neuron firing and cardiac pacemaking: a polygenic modeling approach Tuomo Mäki-Marttunen, Glenn T. Lines, Andy Edwards, Aslak Tveito, Anders M. Dale, Gaute T. Einevoll, Ole A. Andreassen P167 Local field potentials in a 4 × 4 mm2 multi-layered network model Espen Hagen, Johanna Senk, Sacha J. van Albada, Markus Diesmann P168 A spiking network model explains multi-scale properties of cortical dynamics Maximilian Schmidt, Rembrandt Bakker, Kelly Shen, Gleb Bezgin, Claus-Christian Hilgetag, Markus Diesmann, Sacha Jennifer van Albada P169 Using joint weight-delay spike-timing dependent plasticity to find polychronous neuronal groups Haoqi Sun, Olga Sourina, Guang-Bin Huang, Felix Klanner, Cornelia Denk P170 Tensor decomposition reveals RSNs in simulated resting state fMRI Katharina Glomb, Adrián Ponce-Alvarez, Matthieu Gilson, Petra Ritter, Gustavo Deco P171 Getting in the groove: testing a new model-based method for comparing task-evoked vs resting-state activity in fMRI data on music listening Matthieu Gilson, Maria AG Witek, Eric F. Clarke, Mads Hansen, Mikkel Wallentin, Gustavo Deco, Morten L. Kringelbach, Peter Vuust P172 STochastic engine for pathway simulation (STEPS) on massively parallel processors Guido Klingbeil, Erik De Schutter P173 Toolkit support for complex parallel spatial stochastic reaction–diffusion simulation in STEPS Weiliang Chen, Erik De Schutter P174 Modeling the generation and propagation of Purkinje cell dendritic spikes caused by parallel fiber synaptic input Yunliang Zang, Erik De Schutter P175 Dendritic morphology determines how dendrites are organized into functional subunits Sungho Hong, Akira Takashima, Erik De Schutter P176 A model of Ca2+/calmodulin-dependent protein kinase II activity in long term depression at Purkinje cells Criseida Zamora, Andrew R. Gallimore, Erik De Schutter P177 Reward-modulated learning of population-encoded vectors for insect-like navigation in embodied agents Dennis Goldschmidt, Poramate Manoonpong, Sakyasingha Dasgupta P178 Data-driven neural models part II: connectivity patterns of human seizures Philippa J. Karoly, Dean R. Freestone, Daniel Soundry, Levin Kuhlmann, Liam Paninski, Mark Cook P179 Data-driven neural models part I: state and parameter estimation Dean R. Freestone, Philippa J. Karoly, Daniel Soundry, Levin Kuhlmann, Mark Cook P180 Spectral and spatial information processing in human auditory streaming Jaejin Lee, Yonatan I. Fishman, Yale E. Cohen P181 A tuning curve for the global effects of local perturbations in neural activity: Mapping the systems-level susceptibility of the brain Leonardo L. Gollo, James A. Roberts, Luca Cocchi P182 Diverse homeostatic responses to visual deprivation mediated by neural ensembles Yann Sweeney, Claudia Clopath P183 Opto-EEG: a novel method for investigating functional connectome in mouse brain based on optogenetics and high density electroencephalography Soohyun Lee, Woo-Sung Jung, Jee Hyun Choi P184 Biphasic responses of frontal gamma network to repetitive sleep deprivation during REM sleep Bowon Kim, Youngsoo Kim, Eunjin Hwang, Jee Hyun Choi P185 Brain-state correlate and cortical connectivity for frontal gamma oscillations in top-down fashion assessed by auditory steady-state response Younginha Jung, Eunjin Hwang, Yoon-Kyu Song, Jee Hyun Choi P186 Neural field model of localized orientation selective activation in V1 James Rankin, Frédéric Chavane P187 An oscillatory network model of Head direction and Grid cells using locomotor inputs Karthik Soman, Vignesh Muralidharan, V. Srinivasa Chakravarthy P188 A computational model of hippocampus inspired by the functional architecture of basal ganglia Karthik Soman, Vignesh Muralidharan, V. Srinivasa Chakravarthy P189 A computational architecture to model the microanatomy of the striatum and its functional properties Sabyasachi Shivkumar, Vignesh Muralidharan, V. Srinivasa Chakravarthy P190 A scalable cortico-basal ganglia model to understand the neural dynamics of targeted reaching Vignesh Muralidharan, Alekhya Mandali, B. Pragathi Priyadharsini, Hima Mehta, V. Srinivasa Chakravarthy P191 Emergence of radial orientation selectivity from synaptic plasticity Catherine E. Davey, David B. Grayden, Anthony N. Burkitt P192 How do hidden units shape effective connections between neurons? Braden A. W. Brinkman, Tyler Kekona, Fred Rieke, Eric Shea-Brown, Michael Buice P193 Characterization of neural firing in the presence of astrocyte-synapse signaling Maurizio De Pittà, Hugues Berry, Nicolas Brunel P194 Metastability of spatiotemporal patterns in a large-scale network model of brain dynamics James A. Roberts, Leonardo L. Gollo, Michael Breakspear P195 Comparison of three methods to quantify detection and discrimination capacity estimated from neural population recordings Gary Marsat, Jordan Drew, Phillip D. Chapman, Kevin C. Daly, Samual P. Bradley P196 Quantifying the constraints for independent evoked and spontaneous NMDA receptor mediated synaptic transmission at individual synapses Sat Byul Seo, Jianzhong Su, Ege T. Kavalali, Justin Blackwell P199 Gamma oscillation via adaptive exponential integrate-and-fire neurons LieJune Shiau, Laure Buhry, Kanishka Basnayake P200 Visual face representations during memory retrieval compared to perception Sue-Hyun Lee, Brandon A. Levy, Chris I. Baker P201 Top-down modulation of sequential activity within packets modeled using avalanche dynamics Timothée Leleu, Kazuyuki Aihara Q28 An auto-encoder network realizes sparse features under the influence of desynchronized vascular dynamics Ryan T. Philips, Karishma Chhabria, V. Srinivasa Chakravarthy

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Heidelberger Dokumen...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Heidelberger Dokumentenserver
    Article . 2016
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Europe PubMed Central
    Article . 2016
    Data sources: PubMed Central
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMC Neuroscience
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Apollo
    Conference object . 2016
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMC Neuroscience
    Other literature type . Article . 2016 . Peer-reviewed
    License: CC BY
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    72
    citations72
    popularityTop 1%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    visibility3
    visibilityviews3
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Heidelberger Dokumen...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Heidelberger Dokumentenserver
      Article . 2016
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Europe PubMed Central
      Article . 2016
      Data sources: PubMed Central
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMC Neuroscience
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Apollo
      Conference object . 2016
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMC Neuroscience
      Other literature type . Article . 2016 . Peer-reviewed
      License: CC BY
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Laurent Bopp; Laure Resplandy; James C. Orr; Scott C. Doney; +8 Authors

    Ocean ecosystems are increasingly stressed by human-induced changes of their physical, chemical and biological environment. Among these changes, warming, acidification, deoxygenation and changes in primary productivity by marine phytoplankton can be considered as four of the major stressors of open ocean ecosystems. Due to rising atmospheric CO2 in the coming decades, these changes will be amplified. Here, we use the most recent simulations performed in the framework of the Coupled Model Intercomparison Project 5 to assess how these stressors may evolve over the course of the 21st century. The 10 Earth system models used here project similar trends in ocean warming, acidification, deoxygenation and reduced primary productivity for each of the IPCC's representative concentration pathways (RCPs) over the 21st century. For the "business-as-usual" scenario RCP8.5, the model-mean changes in the 2090s (compared to the 1990s) for sea surface temperature, sea surface pH, global O2 content and integrated primary productivity amount to +2.73 (±0.72) °C, −0.33 (±0.003) pH unit, −3.45 (±0.44)% and −8.6 (±7.9)%, respectively. For the high mitigation scenario RCP2.6, corresponding changes are +0.71 (±0.45) °C, −0.07 (±0.001) pH unit, −1.81 (±0.31)% and −2.0 (±4.1)%, respectively, illustrating the effectiveness of extreme mitigation strategies. Although these stressors operate globally, they display distinct regional patterns and thus do not change coincidentally. Large decreases in O2 and in pH are simulated in global ocean intermediate and mode waters, whereas large reductions in primary production are simulated in the tropics and in the North Atlantic. Although temperature and pH projections are robust across models, the same does not hold for projections of subsurface O2 concentrations in the tropics and global and regional changes in net primary productivity. These high uncertainties in projections of primary productivity and subsurface oxygen prompt us to continue inter-model comparisons to understand these model differences, while calling for caution when using the CMIP5 models to force regional impact models.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biogeosciencesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biogeosciences
    Other literature type . Article . 2013 . Peer-reviewed
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    MPG.PuRe
    Article . 2013
    Data sources: MPG.PuRe
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biogeosciences
    Article . 2013
    Data sources: DOAJ-Articles
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biogeosciences
    Article . Preprint
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Biogeosciences Discussions
    Other literature type . Article . Preprint . 2013
    License: CC BY
    Hal-Diderot
    Article . 2013
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    1K
    citations1,111
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biogeosciencesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Biogeosciences
      Other literature type . Article . 2013 . Peer-reviewed
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      MPG.PuRe
      Article . 2013
      Data sources: MPG.PuRe
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Biogeosciences
      Article . 2013
      Data sources: DOAJ-Articles
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Biogeosciences
      Article . Preprint
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Biogeosciences Discussions
      Other literature type . Article . Preprint . 2013
      License: CC BY
      Hal-Diderot
      Article . 2013
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: M. Rinaldi; N. Hiranuma; G. Santachiara; M. Mazzola; +10 Authors

    In this study, we present atmospheric ice-nucleating particle (INP) concentrations from the Gruvebadet (GVB) observatory in Ny-Ålesund (Svalbard). All aerosol particle sampling activities were conducted in April–August 2018. Ambient INP concentrations (nINP) were measured for aerosol particles collected on filter samples by means of two offline instruments: the Dynamic Filter Processing Chamber (DFPC) and the West Texas Cryogenic Refrigerator Applied to Freezing Test system (WT-CRAFT) to assess condensation and immersion freezing, respectively. DFPC measured nINPs for a set of filters collected through two size-segregated inlets: one for transmitting particulate matter of less than 1 µm (PM1), the other for particles with an aerodynamic diameter of less than 10 µm aerodynamic diameter (PM10). Overall, nINPPM10 measured by DFPC at a water saturation ratio of 1.02 ranged from 3 to 185 m−3 at temperatures (Ts) of −15 to −22 ∘C. On average, the super-micrometer INP (nINPPM10-nINPPM1) accounted for approximately 20 %–30 % of nINPPM10 in spring, increasing in summer to 45 % at −22 ∘C and 65 % at −15 ∘C. This increase in super-micrometer INP fraction towards summer suggests that super-micrometer aerosol particles play an important role as the source of INPs in the Arctic. For the same T range, WT-CRAFT measured 1 to 199 m−3. Although the two nINP datasets were in general agreement, a notable nINP offset was observed, particularly at −15 ∘C. Interestingly, the results of both DFPC and WT-CRAFT measurements did not show a sharp increase in nINP from spring to summer. While an increase was observed in a subset of our data (WT-CRAFT, between −18 and −21 ∘C), the spring-to-summer nINP enhancement ratios never exceeded a factor of 3. More evident seasonal variability was found, however, in our activated fraction (AF) data, calculated by scaling the measured nINP to the total aerosol particle concentration. In 2018, AF increased from spring to summer. This seasonal AF trend corresponds to the overall decrease in aerosol concentration towards summer and a concomitant increase in the contribution of super-micrometer particles. Indeed, the AF of coarse particles resulted markedly higher than that of sub-micrometer ones (2 orders of magnitude). Analysis of low-traveling back-trajectories and meteorological conditions at GVB matched to our INP data suggests that the summertime INP population is influenced by both terrestrial (snow-free land) and marine sources. Our spatiotemporal analyses of satellite-retrieved chlorophyll a, as well as spatial source attribution, indicate that the maritime INPs at GVB may come from the seawaters surrounding the Svalbard archipelago and/or in proximity to Greenland and Iceland during the observation period. Nevertheless, further analyses, performed on larger datasets, would be necessary to reach firmer and more general conclusions.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospheric Chemistr...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Atmospheric Chemistry and Physics (ACP)
    Other literature type . Article . 2021 . Peer-reviewed
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2021
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Atmospheric Chemistry and Physics (ACP)
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2021
    Data sources: CNR ExploRA
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility28
    visibilityviews28
    downloaddownloads22
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospheric Chemistr...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Atmospheric Chemistry and Physics (ACP)
      Other literature type . Article . 2021 . Peer-reviewed
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2021
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Atmospheric Chemistry and Physics (ACP)
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2021
      Data sources: CNR ExploRA
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Benedetti-Cecchi; L.; Tamburello; L.; +8 Authors

    SUMMARY Understanding how species and environments respond to global anthropogenic disturbances is one of the greatest challenges for contemporary ecology. The ability to integrate modeling, correlative and experimental approaches within individual research programs will be key to address large-scale, long-term environmental problems. Scale-transition theory (STT) enables this level of integration, providing a powerful framework to link ecological patterns and processes across spatial and temporal scales. STT predicts the large-scale (e.g. regional) behavior of a system on the basis of nonlinear population models describing local (e.g. patch-scale) dynamics and the interaction between these nonlinearities and spatial variation in population abundance or environmental conditions. Here we use STT to predict the dynamics of turf-forming algae on rocky shores at Capraia Island, in the northwest Mediterranean. We developed a model of algal turf dynamics based on density-dependent growth that included the effects of local interactions with canopy algae. The model was parameterized with field data and used to scale up the dynamics of algal turfs from the plot scale (20×20 cm) to the island scale (tens of km). The interaction between nonlinear growth and spatial variance in cover of turfing algae emerged as a key term to translate the local dynamics up to the island scale. The model successfully predicted short-term and long-term mean values of turf cover estimated independently from a separate experiment. These results illustrate how STT can be used to identify the relevant mechanisms that drive large-scale changes in ecological communities. We argue that STT can contribute significantly to the connection between biomechanics and ecology, a synthesis that is at the core of the emerging field of ecomechanics.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Experimental Biology
    Other literature type . Article . 2012 . Peer-reviewed
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    22
    citations22
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Experimental Biology
      Other literature type . Article . 2012 . Peer-reviewed
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Paul V. R. Snelgrove; Karline Soetaert; Martin Solan; Simon F. Thrush; +8 Authors

    Diverse biological communities mediate the transformation, transport, and storage of elements fundamental to life on Earth, including carbon, nitrogen, and oxygen. However, global biogeochemical model outcomes can vary by orders of magnitude, compromising capacity to project realistic ecosystem responses to planetary changes, including ocean productivity and climate. Here, we compare global carbon turnover rates estimated using models grounded in biological versus geochemical theory and argue that the turnover estimates based on each perspective yield divergent outcomes. Importantly, empirical studies that include sedimentary biological activity vary less than those that ignore it. Improving the relevance of model projections and reducing uncertainty associated with the anticipated consequences of global change requires reconciliation of these perspectives, enabling better societal decisions on mitigation and adaptation.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ e-Prints Sotonarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    e-Prints Soton
    Article . 2018 . Peer-reviewed
    Data sources: e-Prints Soton
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    NARCIS
    Article . 2018
    Data sources: NARCIS
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    NIOZ Repository
    Article . 2018
    Data sources: NIOZ Repository
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Trends in Ecology & Evolution
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Trends in Ecology & Evolution
    Article . 2018 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    104
    citations104
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    visibility34
    visibilityviews34
    downloaddownloads17
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ e-Prints Sotonarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      e-Prints Soton
      Article . 2018 . Peer-reviewed
      Data sources: e-Prints Soton
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      NARCIS
      Article . 2018
      Data sources: NARCIS
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      NIOZ Repository
      Article . 2018
      Data sources: NIOZ Repository
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Trends in Ecology & Evolution
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Trends in Ecology & Evolution
      Article . 2018 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Muller-Karger, Frank E.; Miloslavich, Patricia; Bax, Nicholas J.; Simmons, Samantha; +32 Authors

    Measurements of the status and trends of key indicators for the ocean and marine life are required to inform policy and management in the context of growing human uses of marine resources, coastal development, and climate change. Two synergistic efforts identify specific priority variables for monitoring: Essential Ocean Variables (EOVs) through the Global Ocean Observing System (GOOS), and Essential Biodiversity Variables (EBVs) from the Group on Earth Observations Biodiversity Observation Network (GEO BON) (see Data Sheet 1 in Supplementary Materials for a glossary of acronyms). Both systems support reporting against internationally agreed conventions and treaties. GOOS, established under the auspices of the Intergovernmental Oceanographic Commission (IOC), plays a leading role in coordinating global monitoring of the ocean and in the definition of EOVs. GEO BON is a global biodiversity observation network that coordinates observations to enhance management of the world’s biodiversity and promote both the awareness and accounting of ecosystem services. Convergence and agreement between these two efforts are required to streamline existing and new marine observation programs to advance scientific knowledge effectively and to support the sustainable use and management of ocean spaces and resources. In this context, the Marine Biodiversity Observation Network (MBON), a thematic component of GEO BON, is collaborating with GOOS, the Ocean Biogeographic Information System (OBIS), and the Integrated Marine Biosphere Research (IMBeR) project to ensure that EBVs and EOVs are complementary, representing alternative uses of a common set of scientific measurements. This work is informed by the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM), an intergovernmental body of technical experts that helps international coordination on best practices for observing, data management and services, combined with capacity development expertise. Characterizing biodiversity and understanding its drivers will require incorporation of observations fromtraditional andmolecular taxonomy, animal tagging and tracking efforts, ocean biogeochemistry, and ocean observatory initiatives including the deep ocean and seafloor. The partnership between large-scale ocean observing and product distribution initiatives (MBON, OBIS, JCOMM, and GOOS) is an expedited, effective way to support international policy-level assessments (e.g., the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services or IPBES), along with the implementation of international development goals (e.g., the United Nations Sustainable Development Goals). Refereed 14 Manual (incl. handbook, guide, cookbook etc) 2018-06-27

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ OceanBestPractices :...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/