Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to SDSN - Greece. Are you interested to view more results? Visit OpenAIRE - Explore.
10 Research products

  • SDSN - Greece
  • Publications
  • Research software
  • 6. Clean water
  • EU
  • Hal-Diderot
  • HAL Descartes
  • European Marine Science

Date (most recent)
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sylvain Gaillard; Damien Réveillon; Charline Danthu; Fabienne Hervé; +5 Authors

    International audience; Dinophysis is the main dinoflagellate genus responsible for diarrheic shellfish poisoning (DSP) in human consumers of filter feeding bivalves contaminated with lipophilic diarrheic toxins. Species of this genus have a worldwide distribution driven by environmental conditions (temperature, irradiance, salinity, nutrients etc.), and these factors are sensitive to climate change. The D. acuminata-complex may contain several species, including D. sacculus. The latter has been found in estuaries and semi-enclosed areas, water bodies subjected to quick salinity variations and its natural repartition suggests some tolerance to salinity changes. However, the response of strains of D. acuminata-complex (D. cf. sacculus) subjected to salinity stress and the underlying mechanisms have never been studied in the laboratory. Here, a 24 h hypoosmotic (25) and hyperosmotic (42) stress was performed in vitro in a metabolomic study carried out with three cultivated strains of D. cf. sacculus isolated from the French Atlantic and Mediterranean coasts. Growth rate, biovolume and osmolyte (proline, glycine betaine and dimethylsulfoniopropionate (DMSP)) and toxin contents were measured. Osmolyte contents were higher at the highest salinity, but only a significant increase in glycine betaine was observed between the control (35) and the hyperosmotic treatment. Metabolomics revealed significant and strain-dependent differences in metabolite profiles for different salinities. These results, as well as the absence of effects on growth rate, biovolume, okadaic acid (OA) and pectenotoxin (PTXs) cellular contents, suggest that the D. cf. sacculus strains studied are highly tolerant to salinity variations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Harmful Algae
    Article
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Harmful Algae
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Hal-Diderot
    Article . 2021
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Harmful Algae
      Article
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Harmful Algae
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Hal-Diderot
      Article . 2021
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Garcia-Solsona, Ester; Jeandel, Catherine;

    International audience; Elemental concentrations of Rare Earth Elements (REE) and isotopic compositions of Neodymium (ε Nd) have been measured in three water column profiles in the North Western Mediterranean Sea. Clear enrichments of REE are observed when comparing to adjacent Atlantic waters suggesting REE inputs along the circulation in this area. For the first time, relative proportions of external sources including submarine groundwater discharges (SGD) have been quantified for the studied area. Atmospheric deposition is estimated to be the most important external source for all the REE with an average contribution of 44%, followed by diffusion from porewaters, which provide a 30%. Dissolved riverine fluxes account for 11%, SGD for 10% and dissolution of remobilized surface sediments the remaining 6%. Mass balances accounting for seawater transport and identified external sources have been delineated for the three main water masses (Modified Atlantic Waters, Levantine Intermediate Waters and Western Mediterranean Deep Waters). They show that the balances of REE in this area are dominated by seawater mass mixing. Superimposed on this hydrography, REE vertical profiles are affected by external sources and biogeochemical cycling. Dissolved REE are correctly balanced in deep waters whereas substantial missing fluxes are identified in the surface and intermediate water masses. Additional net LREE outputs and HREE inputs are required in the surface waters while net output fluxes for all the REE are missing at intermediate waters. The most likely process suggested here is an active reversible scavenging, consistent with a stronger adsorption of LREE compared to HREE. In the particular case of the redox-sensitive cerium, the most plausible mechanism to explain the net output missing fluxes is Ce +3 removal by particle scavenging via oxidation to insoluble Ce +4. Estimated Ce oxidation rates of 0.33% d −1 in surface waters agree well with previously published values. Exchange fluxes derived from the isotopic Nd mass balance indicate higher Nd scavenging in surface compared to intermediate waters.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemical Geologyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Chemical Geology
    Article
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Chemical Geology
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Hal-Diderot
    Article . 2020
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemical Geologyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Chemical Geology
      Article
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Chemical Geology
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Hal-Diderot
      Article . 2020
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jean-Pierre Gattuso; Jean-Pierre Gattuso; Jean-Pierre Gattuso; Alexandre K. Magnan; +21 Authors

    International audience; The Paris Agreement target of limiting global surface warming to 1.5–2∘C compared to pre-industrial levels by 2100 will still heavily impact the ocean. While ambitious mitigation and adaptation are both needed, the ocean provides major opportunities for action to reduce climate change globally and its impacts on vital ecosystems and ecosystem services. A comprehensive and systematic assessment of 13 global- and local-scale, ocean-based measures was performed to help steer the development and implementation of technologies and actions toward a sustainable outcome. We show that (1) all measures have tradeoffs and multiple criteria must be used for a comprehensive assessment of their potential, (2) greatest benefit is derived by combining global and local solutions, some of which could be implemented or scaled-up immediately, (3) some measures are too uncertain to be recommended yet, (4) political consistency must be achieved through effective cross-scale governance mechanisms, (5) scientific effort must focus on effectiveness, co-benefits, disbenefits, and costs of poorly tested as well as new and emerging measures.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Marine ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Marine Science
    Other literature type . Article . 2018 . Peer-reviewed
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    OceanRep
    Article . 2018 . Peer-reviewed
    Data sources: OceanRep
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    NARCIS
    Article . 2018
    Data sources: NARCIS
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Marine Science
    Article . 2018
    Data sources: NARCIS
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Marine Science
    Article
    License: CC BY
    Data sources: UnpayWall
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    212
    citations212
    popularityTop 0.1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    visibility5
    visibilityviews5
    downloaddownloads35
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Marine ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Marine Science
      Other literature type . Article . 2018 . Peer-reviewed
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      OceanRep
      Article . 2018 . Peer-reviewed
      Data sources: OceanRep
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      NARCIS
      Article . 2018
      Data sources: NARCIS
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Marine Science
      Article . 2018
      Data sources: NARCIS
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Frontiers in Marine Science
      Article
      License: CC BY
      Data sources: UnpayWall
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Desmit, X.; Thieu, V.; Billen, G.; Campuzano, F.; +9 Authors

    Marine eutrophication in the North-East Atlantic (NEA) strongly relies on nutrient enrichment at the river outlets, which is linked to human activities and land use in the watersheds. The question is whether human society can reduce its nutrient emissions by changing land use without compromising food security. A new version of Riverstrahler model (pyNuts-Riverstrahler) was designed to estimate the point and diffuse nutrient emissions (N, P, Si) to the rivers depending on land use in the watersheds across a large domain (Western Europe agro-food systems, waste water treatment). The loads from the river model have been used as inputs to three marine ecological models (PCOMS, ECO-MARS3D, MIRO&CO) covering together a large part of the NEA from the Iberian shelf to the Southern North Sea. The modelling of the land-ocean continuum allowed quantifying the impact of changes in land use on marine eutrophication. Pristine conditions were tested to scale the current eutrophication with respect to a “natural background” (sensu WFD), i.e. forested watersheds without any anthropogenic impact. Three scenarios representing potential management options were also tested to propose future perspectives in mitigating eutrophication. This study shows that a significant decrease in nitrogen fluxes from land to sea is possible by adapting human activities in the watersheds, preventing part of the eutrophication symptoms in the NEA rivers and adjacent coastal zones. It is also shown that any significant achievement in that direction would very likely require paradigmatic changes at social, economic and agricultural levels. This requires reshaping the connections between crop production and livestock farming, and between agriculture and local human food consumption. It also involves cultural changes such as less waste production and a shift towards lower-impact and healthier diets where half of the animal products consumption is replaced by vegetal proteins consumption, known as a demitarian diet (http://www.nine-esf.org/node/281/index.html).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Science of The T...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    The Science of The Total Environment
    Article . 2018 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    89
    citations89
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Daniel Cossa; Xavier Durrieu de Madron; Jörg Schäfer; Stéphane Guédron; +3 Authors

    Ocean margins are focal regions in terms of mercury (Hg) exchanges between the continent and the open sea. The aim of this paper is to describe the distribution and partition of Hg between the gaseous, dissolved and particulate phases in the waters of the Northwestern Mediterranean (NWM) margin, in order to assess the Hg sources and exchanges within the continuum between the continental shelf (Gulf of Lions) and the open sea (Northern Gyre). Mean ( standard deviation) of total Hg species (HgT) concentrations in unfiltered water samples were 1.52 +/- 1.00 pmol L-1 (n = 36) in the inner shelf, 1.09 +/- 0.15 pmol L-1 (n = 30) along the slope, and 1.10 +/- 0.13 pmol L-1 (n = 99) in the Northern Gyre. The dissolved phase (<0.45 in) average concentrations were 0.80 +/- 0.47 pmol L-1 (n = 37) in the inner shelf, 0.93 +/- 0.20 pmol L-1 (n = 4) along the slope and 0.84 +/- 0.10 (n = 20) pmol L-1 in the Northern Gyre. The particulate fraction of Hg decreased very strongly seaward from around 60% on the shelf to 10-25% above the Northern Gyre. Very low dissolved HgT concentrations occurred in the inner shelf water, consistent with the results of incubation experiments, which demonstrated that shelf water is very efficient in both production and release of dissolved gaseous Hg into the atmosphere. In the North Gyre waters column HgT presents a distribution pattern inverse to that of dissolved oxygen, and a slight Hg enrichment in the deep layer (Western Mediterranean Deep Water). The Hg from the open sea water is the largest Hg input to the Gulf of Lions (similar to 5.7 kmol yr(-1)), whereas inputs from the riverine source account for similar to 3.4 kmol yr(-1) and atmospheric deposition for less than 0.5 kmol yr(-1). The Hg accumulated in the sediments of the shelf is similar to 4.5 kmol yr(-1), including 0.6-1.7 kmol yr(-1) in the Rhone prodelta sediments. The evasion to the atmosphere represents a Hg flux of similar to 2.6 kmol yr(-1).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Progress In Oceanogr...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Horizon / Pleins textes
    Other literature type . 2018
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Progress In Oceanography
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Progress In Oceanogr...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Horizon / Pleins textes
      Other literature type . 2018
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Progress In Oceanography
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Daniel Cossa; Anne-Sophie Fanget; Jean-Francois Chiffoleau; M-A Bassetti; +6 Authors

    International audience; The Rhône pro-delta sediments receive the particulate inputs from the Rhône River, the largest freshwater discharge of the Western Mediterranean Sea. Trace element (TEs: Ag, Cd, Co, Cr, Cu, Ni, Pb, and Zn) concentrations and stable Pb isotope ratios were determined along a 7.7-meter-long sediment core collected from the Rhône prodeltaic lobe, archiving the deposits of the last 400 years. Trace element mean concentrations during the pre-industrialized era (before 1850 AD) were no different from the average composition of Earth’s upper crust, except for Cr. Principal component analysis, performed on TEs and tracers, suggests three origins for TEs that we identified as (i) marine biogenic material (Ag, Cd), (ii) ultramafic rocks (Li, Cr, Ni), and (iii) other clay minerals (Co, Cu, Pb and Zn). During the pre-industrial period, several changes in the TE/Al ratios coincided with flood events or/and modifications in the channelization of the Rhône River mouth. Some frequencies in the TEs temporal variations allow us to hypothesize some influence of climate variation. Sediments deposited after 1850 AD exhibited concentrations of certain TEs exceeding 1.3 to 3.5 times the concentrations of the pre-industrial era (Ag> Cd-Pb>Cu-Zn). Principal component analysis, performed on post-1850 AD data, allows to distinguish pristine and “anthropogenically impacted” TEs. Pristine TEs, such as Co, Cr, and Ni, are linked with clay markers (Al, Li and Fe), Co and Ni are associated with Mn-enrichment, whereas Cr is correlated with Fe. “Anthropogenically impacted” elements consist of Ag, Cd, Cu, Pb, and Zn. Vertical profiles show that TE contamination has increased dramatically after the IInd World War and reached a maximum between 1970 and 1980, consistently with anthropogenic atmospheric emissions changes. Sediment deposited on the Rhône prodelta at the beginning of XVIIth Century have 206/207Pb ratios close to values of natural Pb (1.200), whereas sediments deposited after 1850 AD are clearly contaminated by European gasoline and industrial Pb pools (<1.180). In addition, peak-events can be related to flooding periods, natural and man-induced channelization of the Rhône River mouth, or diagenetic processes.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Horizon / Pleins tex...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Horizon / Pleins textes
    Other literature type . 2018
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Progress In Oceanography
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Hal-Diderot
    Article . 2018
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Horizon / Pleins tex...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Horizon / Pleins textes
      Other literature type . 2018
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Progress In Oceanography
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Hal-Diderot
      Article . 2018
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: J. C. Orr; J.-M. Epitalon;

    Modelers compute ocean carbonate chemistry often based on code from the Ocean Carbon Cycle Model Intercomparison Project (OCMIP), last revised in 2005. Here we offer improved publicly available Fortran 95 routines to model the ocean carbonate system (mocsy 2.0). Both codes take as input dissolved inorganic carbon CT and total alkalinity AT, tracers that are conservative with respect to mixing and changes in temperature and salinity. Both use the same thermodynamic equilibria to compute surface-ocean pCO2 and simulate air–sea CO2 fluxes, but mocsy 2.0 uses a faster and safer algorithm (SolveSAPHE) to solve the alkalinity-pH equation, applicable even under extreme conditions. The OCMIP code computes only surface pCO2, while mocsy computes all other carbonate system variables throughout the water column. It also avoids three common model approximations: that density is constant, that modeled potential temperature is equal to in situ temperature, and that depth is equal to pressure. Errors from these approximations grow with depth, e.g., reaching 3% or more for pCO2, H+, and ΩA at 5000 m. The mocsy package uses the equilibrium constants recommended for best practices. It also offers two new options: (1) a recently reassessed total boron concentration BT that is 4% larger and (2) new K1 and K2 formulations designed to include low-salinity waters. Although these options enhance surface pCO2 by up to 7 μatm, individually, they should be avoided until (1) best-practice equations for K1 and K2 are reevaluated with the new BT and (2) formulations of K1 and K2 for low salinities are adjusted to be consistent among pH scales. The common modeling practice of neglecting alkalinity contributions from inorganic P and Si leads to substantial biases that could easily be avoided. With standard options for best practices, mocsy agrees with results from the CO2SYS package within 0.005% for the three inorganic carbon species (concentrations differ by less than 0.01 μmol kg−1). Yet by default, mocsy's deep-water fCO2 and pCO2 are many times larger than those from older packages, because they include pressure corrections for K0 and the fugacity coefficient.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geoscientific Model ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Geoscientific Model Development
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Geoscientific Model Development
    Article . 2015 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Oskar Bordeaux
    Article . 2015
    License: CC BY
    Data sources: Oskar Bordeaux
    Hal-Diderot
    Article . 2015
    License: CC BY
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    73
    citations73
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geoscientific Model ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Geoscientific Model Development
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Geoscientific Model Development
      Article . 2015 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Oskar Bordeaux
      Article . 2015
      License: CC BY
      Data sources: Oskar Bordeaux
      Hal-Diderot
      Article . 2015
      License: CC BY
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Castro-Jiménez, Javier; Rotllant, Guiomar; Ábalos, Manuela; Parera, Jordi; +4 Authors

    Submarine canyons are efficient pathways transporting sediments and associated pollutants to deep sea. The objective of this work was to provide with the first assessment of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) levels and accumulation in deep-sea megafauna (crustacean and fish) and sediments in the Blanes submarine canyon (North-Western Mediterranean Sea). The influence of the selected species habitats (pelagic, nektobenthic, and benthic) and the trophic chain level on the accumulation of dioxins was also investigated. Bottom sediment and biota samples were collected at different depths and locations inside the canyon and in the adjacent slope outside the canyon influence. ∑2,3,7,8-PCDD/F concentrations in sediments varied from 102 to 680pgg-1 dry weight (d.w.) (1-6 WHO98-TEQpgg-1d.w.). Dioxins are enriched in bottom sediments at higher depths inside the canyon and in particular in the deepest parts of the canyon axis (1700m depth), whereas no enrichment of dioxins was verified at the deepest sediments from the adjacent open slope outside the canyon influence. The proportion of ∑2,3,7,8-PCDF (furans) to ∑2,3,7,8-PCDD (dioxins) increased for sediments with higher soot carbon content consistent with the higher affinity of PCDF for sorption onto soot carbon. Higher ∑2,3,7,8-PCDD/F levels were found in crustaceans than in fish, ranging from 220 to 795pgg-1 lipid weight (l.w.) (13-90 WHO98-TEQpgg-1l.w.) and 110 to 300pgg-1l.w. (22-33 WHO98-TEQpgg-1l.w.) in crustaceans and fish, respectively. Dioxin highest concentrations were found in nektobenthic organisms, i.e., benthic organism with swimming capabilities (both fish and crustaceans). These higher levels are consistent with the higher trophic level and predicted biomagnification factors (BMFs) of nektobenthic species. The reduced availability of sediment-bound PCDD/F for benthic species mainly due to soot and organic carbon sorption of these contaminants most probably influenced this result too. While biomagnification exerts a clear influence on the total dioxin concentrations in biota, life habits seem to exert an influence in the differential congener-specific accumulation of dioxins rather than in the total concentration. Thus, pelagic species reflected the estimated congener pattern from the surface water dissolved phase and phytoplankton, whereas the dioxin pattern in benthic and nektobenthic species was more similar to the estimated pattern in the deep-water dissolved phase and the sediment. The three crustacean species considered in this study bioaccumulated higher amounts of other dioxin congeners (non-2,3,7,8-PCDD/Fs) compared to fish. An interplay of several factors, such as biota habitats, differential uptake of water column dioxin (dissolved and particle-bound fractions), and different metabolization capabilities and rates (CYP-mediated metabolism) may explain the differences observed in dioxin patterns among crustacean species and between fish and crustaceans in the Blanes submarine canyon. © 2013 Elsevier Ltd. The present work was funded by the MICYT projects RECS II (REN02/04556/C02/MAR to Manuel Espino and JBC), PROMETEO (CTM2007-66316-C02/MAR to M. Canals and JBC), DOS MARES (CTM2010-21810-C03-03/MAR to M. Canals and JBC), and GRACCIE (CSD2007-00067, Consolider-Ingenio Program). The European Commission projects HERMIONE (FP7/2007-2013, grant agreement no. 226354) and PERSEUS (FP7-OCEAN-2011-287600). The Generalitat de Catalunya ‘‘Grups de Recerca Consolidats’’ grant (2009 SGR-1305) Special issue Integrated study of a deep submarine canyon and adjacent open slopes in the Western Mediterranean Sea: an essential habitat.-- 13 pages, 5 figures, 5 tables, supplementary data https://doi.org/10.1016/j.pocean.2013.07.017 Peer Reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hal-Diderot
    Article . 2013
    Data sources: Hal-Diderot
    Progress In Oceanography
    Article . 2013 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    16
    citations16
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility22
    visibilityviews22
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Hal-Diderot
      Article . 2013
      Data sources: Hal-Diderot
      Progress In Oceanography
      Article . 2013 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Yu-Te Hsieh; Walter Geibert; Pieter van-Beek; Henrik Stahl; +2 Authors

    ISI Document Delivery No.: 192NG Times Cited: 0 Cited Reference Count: 54 Cited References: Austin WEN, 2002, POLAR RES, V21, P251, DOI 10.1111/j.1751-8369.2002.tb00078.x BOLLINGER MS, 1984, NATURE, V309, P444, DOI 10.1038/309444a0 BROECKER WS, 1967, SCIENCE, V158, P1307, DOI 10.1126/science.158.3806.1307 BROECKER WS, 1973, EARTH PLANET SC LETT, V20, P35, DOI 10.1016/0012-821X(73)90137-4 Charette MA, 2001, LIMNOL OCEANOGR, V46, P465 CHUNG Y, 1980, EARTH PLANET SC LETT, V49, P309, DOI 10.1016/0012-821X(80)90074-6 Cloern JE, 2001, MAR ECOL PROG SER, V210, P223, DOI 10.3354/meps210223 COCHRAN J. K, 1984, THE ESTUARY AS A FIL, P179 COCHRAN JK, 1980, AM J SCI, V280, P849 COHEN AS, 1991, ANAL CHEM, V63, P2705, DOI 10.1021/ac00023a008 EDWARDS A, 1986, NATO ASI SERIES G, VG7, P195 EDWARDS A, 1977, ESTUAR COAST MAR SCI, V5, P575, DOI 10.1016/0302-3524(77)90085-8 EDWARDS A, 1986, SCOTTISH MARINE BIOL Foster DA, 2004, MAR CHEM, V87, P59, DOI 10.1016/j.marchem.2004.02.003 Geibert W, 2008, MAR CHEM, V109, P409, DOI 10.1016/j.marchem.2007.07.005 HAMMOND DE, 1990, J GEOPHYS RES-OCEANS, V95, P3321, DOI 10.1029/JC095iC03p03321 Hancock GJ, 2006, J GEOPHYS RES-OCEANS, V111, DOI 10.1029/2006JC003608 Hancock GJ, 2000, GEOCHIM COSMOCHIM AC, V64, P3685, DOI 10.1016/S0016-7037(00)00469-5 HOWE J. A, 2001, ARGYLL SCOTT J GEOL, V37, P3 Howe JA, 2002, MAR GEOL, V185, P417, DOI 10.1016/S0025-3227(01)00299-7 Howe JA, 2010, GEOL SOC SPEC PUBL, V344, P5, DOI 10.1144/SP344.2 Hsieh YT, 2011, J ANAL ATOM SPECTROM, V26, P1338, DOI 10.1039/c1ja10013k Inall M, 2004, OCEAN DYNAM, V54, P307, DOI 10.1007/s10236-003-0059-2 Inall ME, 2009, GEOPHYS RES LETT, V36, DOI 10.1029/2008GL036849 KADKO D, 1987, GEOCHIM COSMOCHIM AC, V51, P1613, DOI 10.1016/0016-7037(87)90342-5 Karakassis I, 2000, ICES J MAR SCI, V57, P1462, DOI 10.1006/jmsc.2000.0925 KAUFMAN A, 1973, J GEOPHYS RES, V78, P8827, DOI 10.1029/JC078i036p08827 VanderLoeff MMR, 1995, DEEP-SEA RES PT II, V42, P1533 KU TL, 1994, J GEOPHYS RES-OCEANS, V99, P10255, DOI 10.1029/94JC00089 Ku TL, 2008, RADIOACTIV ENVIRONM, V13, P307, DOI 10.1016/S1569-4860(07)00009-5 LI YH, 1979, EARTH PLANET SC LETT, V43, P343, DOI 10.1016/0012-821X(79)90089-X MOORE WS, 1985, J GEOPHYS RES-OCEANS, V90, P6983, DOI 10.1029/JC090iC04p06983 Moore WS, 1998, P INDIAN AS-EARTH, V107, P343 Moore WS, 1996, J GEOPHYS RES-OCEANS, V101, P1321, DOI 10.1029/95JC03139 Moore WS, 2000, J GEOPHYS RES-OCEANS, V105, P22117, DOI 10.1029/1999JC000289 Moore WS, 2000, CONT SHELF RES, V20, P1993, DOI 10.1016/S0278-4343(00)00054-6 Moore WS, 2008, MAR CHEM, V109, P188, DOI 10.1016/j.marchem.2007.06.015 Moore WS, 2008, NAT GEOSCI, V1, P309, DOI 10.1038/ngeo183 Overnell J, 2002, ESTUAR COAST SHELF S, V55, P481, DOI 10.1006/ecss.2001.0919 Porcelli D, 2003, REV MINERAL GEOCHEM, V52, P317, DOI 10.2113/0520317 Rama, 1996, GEOCHIM COSMOCHIM AC, V60, P4645 RIDGWAY IM, 1987, MAR CHEM, V21, P229, DOI 10.1016/0304-4203(87)90061-2 SANTSCHI PH, 1980, EARTH PLANET SC LETT, V51, P248, DOI 10.1016/0012-821X(80)90208-3 SARMIENTO JL, 1976, EARTH PLANET SC LETT, V32, P357, DOI 10.1016/0012-821X(76)90076-5 Scholten JC, 2010, MAR CHEM, V121, P206, DOI 10.1016/j.marchem.2010.04.009 Skogen MD, 2009, AQUACULTURE, V298, P70, DOI 10.1016/j.aquaculture.2009.10.018 STAHL H, 2011, SET UP AND IMPLEMENT Stashchuk N, 2007, J PHYS OCEANOGR, V37, P1793, DOI 10.1175/JPO3087.1 Statham PJ, 2005, ENVIRON SCI TECHNOL, V39, P9440, DOI 10.1021/es050980t Straneo F, 2011, NAT GEOSCI, V4, P322, DOI [10.1038/ngeo1109, 10.1038/NGEO1109] TAMMEMAGI HY, 1976, GEOL MAG, V113, P271 van Beek P, 2008, DEEP-SEA RES PT II, V55, P622, DOI 10.1016/j.dsr2.2007.12.025 WEBSTER IT, 1994, LIMNOL OCEANOGR, V39, P1917 WOOD BJB, 1973, J ECOL, V61, P569, DOI 10.2307/2259045 Hsieh, Yu-Te Geibert, Walter van-Beek, Pieter Stahl, Henrik Aleynik, Dmitry Henderson, Gideon M. British Council 'Alliance' grant [09.014]; Scottish Alliance for Geosciences, Environment and Society (SAGES); EU FP7 project HYPOX [226213]; Swire Educational Trust for Hsieh's scholarship at University College, University of Oxford We thank the crew of R/V Calanus for sampling assistance. Sabine Cockenpot, Tristan Horner, Robyn Tuerena, and Xinyuan Zheng are also acknowledged for their assistance in sample collections. We thank John Howe for providing the bathymetry and sedimentary background of Loch Etive and Mark Inall for discussion of ocean mixing in Loch Etive. Willard Moore and Don Porcelli are also thanked for helpful discussion. Alex Thomas, Andrew Mason, and Steve Wyatt are acknowledged for assistance with mass spectrometry and laboratory support. W.G. and P.vB. were supported by the British Council 'Alliance' grant 09.014. W.G. was supported by the Scottish Alliance for Geosciences, Environment and Society (SAGES). The cabled mooring installation in Loch Etive was supported by EU FP7 project HYPOX (grant 226213). The Swire Educational Trust is thanked for Hsieh's scholarship at University College, University of Oxford. We are grateful to Bo Thamdrup, the associate editor, Michiel Rutgers van der Loeff, and an anonymous referee for very helpful reviews and constructive comments. 0 AMER SOC LIMNOLOGY OCEANOGRAPHY WACO LIMNOL OCEANOGR; The radium (Ra) quartet (Ra-228, Ra-226, Ra-224, and Ra-223) has been investigated in Loch Etive, a Scottish fjord, to provide new constraints on water mixing rates and on the inputs of Ra from sediments. Maximum water transport rates for the inflowing estuarine layer at 5 m depth, determined from the excess Ra-223 (Ra-223(ex)), indicate that this water travels at no more than 2.4 +/- 0.2 cm s(-1) net and that it takes 17 +/- 2 d for waters to travel from the mouth to the head of the loch if no horizontal mixing is taken into account. Alternatively, neglecting advection, the short-lived Ra distribution could be explained by horizontal mixing rates of 6.1 x 10(6) cm(2) s(-1) (Ra-223(ex)) or 9.1 x 10(6) cm(2) s(-1) (Ra-224(ex)). Periodic overturning circulation plays an important role in resetting chemical cycles in the isolated deep basin of the inner loch. Sediment in this deep basin provides the major input of Ra-228 to the isolated deep water, and the accumulation of Ra-228 in deep waters allows an assessment of sedimentary fluxes of Ra-228, a poorly constrained aspect of the Ra-228 input to the global ocean. The calculated sedimentary Ra-228 flux of 2.1 +/- 0.2 (x 10(9)) atoms m(-2) yr(-1) in the inner deep basin is comparable with previous measurements of sedimentary Ra-228 inputs from shelf sediments, supporting existing global Ra-228 budgets, which are used to assess global rates of groundwater discharge to the ocean.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Edinburgh Research E...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Limnology and Oceanography; Oxford University Research Archive
    Other literature type . Article . 2013 . 2016 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Hal-Diderot
    Article . 2013
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    10
    citations10
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Edinburgh Research E...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Limnology and Oceanography; Oxford University Research Archive
      Other literature type . Article . 2013 . 2016 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Hal-Diderot
      Article . 2013
      Data sources: Hal-Diderot
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Carol Turley; Jean-Pierre Gattuso;

    International audience; Anthropogenic carbon dioxide (CO2) emissions to the atmosphere and subsequent uptake by the ocean are changing seawater chemistry, a process known as ocean acidification. Research indicates that as ocean acidification continues, reflecting increasing CO2 emissions, it is likely that although some species will be tolerant it will impact many marine organisms and processes, including composition of communities and food webs. Whilst there may be local actions to limit acidification from local sources the root cause of ocean acidification, CO2 emissions, is a global issue requiring global action through United Nations bodies.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Opinion in E...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hal-Diderot
    Article . 2012
    License: CC BY NC ND
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    46
    citations46
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to SDSN - Greece. Are you interested to view more results? Visit OpenAIRE - Explore.
10 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sylvain Gaillard; Damien Réveillon; Charline Danthu; Fabienne Hervé; +5 Authors

    International audience; Dinophysis is the main dinoflagellate genus responsible for diarrheic shellfish poisoning (DSP) in human consumers of filter feeding bivalves contaminated with lipophilic diarrheic toxins. Species of this genus have a worldwide distribution driven by environmental conditions (temperature, irradiance, salinity, nutrients etc.), and these factors are sensitive to climate change. The D. acuminata-complex may contain several species, including D. sacculus. The latter has been found in estuaries and semi-enclosed areas, water bodies subjected to quick salinity variations and its natural repartition suggests some tolerance to salinity changes. However, the response of strains of D. acuminata-complex (D. cf. sacculus) subjected to salinity stress and the underlying mechanisms have never been studied in the laboratory. Here, a 24 h hypoosmotic (25) and hyperosmotic (42) stress was performed in vitro in a metabolomic study carried out with three cultivated strains of D. cf. sacculus isolated from the French Atlantic and Mediterranean coasts. Growth rate, biovolume and osmolyte (proline, glycine betaine and dimethylsulfoniopropionate (DMSP)) and toxin contents were measured. Osmolyte contents were higher at the highest salinity, but only a significant increase in glycine betaine was observed between the control (35) and the hyperosmotic treatment. Metabolomics revealed significant and strain-dependent differences in metabolite profiles for different salinities. These results, as well as the absence of effects on growth rate, biovolume, okadaic acid (OA) and pectenotoxin (PTXs) cellular contents, suggest that the D. cf. sacculus strains studied are highly tolerant to salinity variations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Harmful Algae
    Article
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Harmful Algae
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Hal-Diderot
    Article . 2021
    Data sources: Hal-Diderot
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    7
    citations7