Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to SDSN - Greece. Are you interested to view more results? Visit OpenAIRE - Explore.
227 Research products

  • SDSN - Greece
  • 2014-2023
  • Publications
  • Research software
  • Conference object
  • Mémoires en Sciences de l'Information et de la Communication
  • Hal-Diderot

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • Authors: Vandeputte, Marc;

    International audience

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Vandeputte, Marc;

    International audience

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Gaki, Dimitra; Felekis, Serafim; Vlahos, George; Herzon, Irina; +11 Authors

    International audience; This paper aims to present the results of the Erasmus + RUR'UP project that developed educational tools for scientists, public managers, practitioners, and agricultural advisors living and working in peripheral rural areas. Based on the assessment of the educational needs and gaps for the sustainable development of the EU peripheral rural areas of Greece.

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Chênais, Nathalie; Nóbrega, Rafael; Thomas, Manon; Porcon, Béatrice; +6 Authors

    National audience; Les mécanismes impliqués dans le renouvèlement des cellules germinales souches chez les mâles immatures ou chez les individus adultes sexuellement matures restent très mal connus, en particulier chez les poissons. La production d'organoïdes testiculaires est une approche de choix pour étudier les interactions moléculaires entre les cellules somatiques et les cellules germinales ainsi que les modes de divisions symétriques et/ou asymétriques des cellules souches germinales. En effet, au contraire des cultures 2D, les organoïdes pourraient permettre de reproduire une niche germinale plus proche de celle rencontrée in vivo.

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Marta Via; Gang Chen; Francesco Canonaco; Kaspar R. Daellenbach; +21 Authors

    Particulate matter (PM) has become a major concern in terms of human health and climate impact. In particular, the source apportionment (SA) of organic aerosols (OA) present in submicron particles (PM1) has gained relevance as an atmospheric research field due to the diversity and complexity of its primary sources and secondary formation processes. Moreover, relatively simple but robust instruments such as the Aerosol Chemical Speciation Monitor (ACSM) are now widely available for the near-real-time online determination of the composition of the non-refractory PM1. One of the most used tools for SA purposes is the source-receptor positive matrix factorisation (PMF) model. Even though the recently developed rolling PMF technique has already been used for OA SA on ACSM datasets, no study has assessed its added value compared to the more common seasonal PMF method using a practical approach yet. In this paper, both techniques were applied to a synthetic dataset and to nine European ACSM datasets in order to spot the main output discrepancies between methods. The main advantage of the synthetic dataset approach was that the methods' outputs could be compared to the expected "true"values, i.e. the original synthetic dataset values. This approach revealed similar apportionment results amongst methods, although the rolling PMF profile's adaptability feature proved to be advantageous, as it generated output profiles that moved nearer to the truth points. Nevertheless, these results highlighted the impact of the profile anchor on the solution, as the use of a different anchor with respect to the truth led to significantly different results in both methods. In the multi-site study, while differences were generally not significant when considering year-long periods, their importance grew towards shorter time spans, as in intra-month or intra-day cycles. As far as correlation with external measurements is concerned, rolling PMF performed better than seasonal PMF globally for the ambient datasets investigated here, especially in periods between seasons. The results of this multi-site comparison coincide with the synthetic dataset in terms of rolling-seasonal similarity and rolling PMF reporting moderate improvements. Altogether, the results of this study provide solid evidence of the robustness of both methods and of the overall efficiency of the recently proposed rolling PMF approach. Acknowledgements IDAEA-CSIC is a Centre of Excellence Severo Ochoa (Spanish Ministry of Science and Innovation, Project CEX2018-000794-S). The authors gratefully acknowledge the Romanian National Air Quality Monitoring Network (NAQMN, https://www.calitateaer.ro/public/home-page/?__locale=ro, last access: September 2022) for providing NOx data. Financial support This research has been supported by the Generalitat de Catalunya (grant no. AGAUR 2017 SGR41), the European Cooperation in Science and Technology (grant no. COST Action CA16109 COLOSSAL), the Ministerio de Ciencia, Innovación y Universidades (CAIAC, grant no. PID2019-108990RB-I00 and FEDER, grant no. EQC2018-004598-P.), the Horizon 2020, the Ministry of Education and Research, Romania (grant nos. PN-III-P1-1.1-TE-2019-0340 and 18PFE/30.12.2021, 18N/2019), the Agence Nationale de la Recherche (grant no. PIA, ANR-11_LABX-0005-01), the Conseil Régional Hauts-de-France (CLIMIBIO grant), the Ministère de l'Enseignement Supérieur et de la Recherche (CARA grant), the Environmental Protection Agency (AEROSOURCE, grant no. 2016-CCRP-MS-31), the Department of the Environment, Climate and Communications (AC3 network grant), and the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SAMSAM, grant nos. IZCOZ9_177063 and PZPGP2_201992). We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI). Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospheric Measurem...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Atmospheric Measurement Techniques
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Sygma; Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Copernicus Publications
    Other literature type . 2022
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.5194/egusph...
    Preprint . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospheric Measurem...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Atmospheric Measurement Techniques
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Sygma; Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Copernicus Publications
      Other literature type . 2022
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.5194/egusph...
      Preprint . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Guillemoto, Quentin; Devau, Nicolas; Picot-Colbeaux, Géraldine; Valdes, Danièle; +5 Authors

    International audience

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Picot-Colbeaux, Géraldine; Guillemoto, Quentin; Thierion, Charlotte; Wissocq, Aubéry; +5 Authors

    International audience

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Colbach, Nathalie; Felten, Emeline; Gée, Christelle; Klein, Anthony; +6 Authors

    Book of abstract p.110-111; International audience; Pea (Pisum sativum L.) is a key diversification crop but current varieties are not verycompetitive against weeds. The objective of this study was to identify, depending on the typeof cropping system and weed flora, (1) the key pea parameters that drive crop production,weed control and weed contribution to biodiversity, (2) optimal combinations of peaparameter values and crop-management techniques to maximise these goals. For this, virtualexperiments were run, using FLORSYS, a mechanistic simulation model (Colbach et al., 2021,Field Crops Res 261:108006). This individual-based 3D model simulates daily crop-weed seedand plant dynamics over the years, from the cropping system and pedoclimate. Here, thismodel was parameterized for seven pea varieties (Cameor, China, DCG0449, Enduro, Isard,Kayanne, 886/1), from literature and experiments. The latter focused on potential plantmorphology and shading response. Differences between varieties depended on the analysedparameter, e.g., varieties were very similar in terms of leaf biomass ratio (LBR, leaf biomassdivided by above-ground plant biomass) whereas specific leaf area (SLA, ratio of total leaf areadivided by total leaf biomass) at early stages was lower for the two tested spring varieties(Cameor and Kayanne) than for the five winter varieties (except Isard). Then, ten virtualvarieties were created by randomly combining variety-parameter values according to a LatinHypercube Sampling (LHS) plan, respecting parameter ranges and correlations observed in theactual varieties. A global sensitivity analysis was run, using another LHS plan to combine peavarieties, crop rotations and management techniques in nine contrasting situations (e.g.,conventional vs organic, no-till, type of weed flora). Simulated data were analysed withclassification and regression trees (CART). We highlighted (1) Parameters that drive potential(weed-free) yield and competitivity against weeds, depending on variety type (spring vs.winter) and cropping system. These are pointers for breeding varieties to regulate weeds bybiological interactions; (2) Rules to guide farmers to choose the best pea variety, dependingon the production goal and the cropping system; (3) The trade-off between increasing yieldpotential and minimizing yield losses due to weeds when choosing pea variety andmanagement, especially in winter peas. In short, any parameter values that delayed and/orreduced crop emergence decreased potential yield and increased yield loss due to weeds.Conversely, parameter values that increased crop canopy volume (e.g., large LBR duringreproduction stages) and crop growth duration (e.g., delayed flowering onset) had theopposite effect. Shading response was crucial: the more pea varieties increased plant heightand leaf biomass per unit biomass when shaded, the better they controlled weeds. These mainrules describing pea ideotypes were the same for all performance goals, managementstrategies and analyses scales. But the key parameters depended on variety type and aims.For instance, parameters driving germination and pre-emergent growth were crucial for111reducing yield loss in winter pea but not in spring pea or for potential yield. Some varietyfeatures only fitted to particular systems, e.g., parameters delaying pea emergence were onlybeneficial in case of herbicide-spraying and disastrous in unsprayed systems.The more the grown variety differed from the weed-controlling ideotype, the moremanagement rules were needed to compensate. Conversely, if one of the two main weedcontrol levers, herbicide or tillage, was missing from the cropping system, the choice of thepea-variety and/or of other management levers became more important. We are nowapplying this methodology to identify ideal trait combinations for wheat-peaintercrops.FundingINRAE, ANR PeaMUST (ANR-11-BTBR-0002), EU Horizon 2020 (N 727217 ReMIX), FrenchMinistry of Agriculture and Food (CADAR RAID).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Plant S...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Frontiers in Plant Science
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Marouf, Abderahmane; Chouippe, Agathe; Truong, Hung Dinh; Hoarau, Yannick; +3 Authors

    The flow around the Leonardo Next-Generation Civil Tiltrotor platform (NextGenCTR or NGCTR) is examined in the context of the European research programme CleanSky AFC4TR Active Flow Control for Tilt-Rotor aircraft https://www.afc4tr.eu N 886718. The objective of the AFC4TR project is to investigate the use of Active Flow Control using pulsed air blowing devices with Zero Net Mass Flux (ZNMF) to control the vortical flow around wings. Three-dimensional simulations are carried out using the Navier-Stokes Multi-Block solver NSMB ([1], [2]) at high Reynolds number and near stall angle of attack of near stall condition corresponding to the take-off configuration. The flow is characterized by the presence of corner vortices formed in junctions located near the fuselage and the nacelle which results in a loss of the aerodynamic performances (decrease of lift, increase of drag). The flow is separated around the aileron and causes a considerable loss in its efficiency during the airplane maneuverability. This study examines these corner vortices using adapted turbulence models to capture their correct sizes. The rotation of the engine propellers is also considered due to the unsteady periodic effects produced on the pressure distribution of the wing and fuselage surfaces leading to an unstable evolution of these corner vortices. The study examines the effects of the Zero Net Mass Flux devices by producing a synthetic jet using a sinusoidal oscillating membrane or a piston to alternatingly force the fluid through an orifice into the external flow field. These devices (also known as synthetic jet actuators) do not require external fluid supply of complex piping, in addition to their low cost and small size. This work focuses on the optimization of different parameters as the frequency of actuation, the velocity amplitude, the angle of the jet and the dimensions of the actuators to better reattach the flow through the enhancement of the mixing and momentum transfer within the boundary layer to explore the capabilities of the Active Flow Control (AFC) applicability to a full-scale aircraft configuration at real flight conditions. References [1] Y. Hoarau, D. Pena, J. B. Vos, D. Charbonnier, A. Gehri, M. Braza, T. Deloze, and E. Laurendeau. Recent Developments of the Navier Stokes Multi Block (NSMB) CFD solver. In 54th AIAA Aerospace Sciences Meeting, 2016. URL 10.2514/6.2016-2056. [2] J. B. Vos, A. Rizzi, A. Corjon, E. Chaput, and E. Soinne. Recent advances in aerodynamics inside the NSMB (Navier Stokes Multi Block) consortium. In 36th AIAA Aerospace Sciences Meeting and Exhibit, 1998. URL https://doi.org/10.2514/6.1998-225.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hyper Article en Ligne
    Other literature type . 2022
    https://doi.org/10.13009/eucas...
    Other literature type . 2022
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Hyper Article en Ligne
      Other literature type . 2022
      https://doi.org/10.13009/eucas...
      Other literature type . 2022
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Chenais, Nathalie; Henriquenobrega, Rafael; Thomas, Manon; Porcon, Beatrice; +5 Authors

    International audience

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Hyper Article en Ligne
    Other literature type . 2022
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hyper Article en Lig...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Hyper Article en Ligne
      Other literature type . 2022
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to SDSN - Greece. Are you interested to view more results? Visit OpenAIRE - Explore.
227 Research products
  • Authors: Vandeputte, Marc;

    International audience

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Vandeputte, Marc;

    International audience

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Gaki, Dimitra; Felekis, Serafim; Vlahos, George; Herzon, Irina; +11 Authors

    International audience; This paper aims to present the results of the Erasmus + RUR'UP project that developed educational tools for scientists, public managers, practitioners, and agricultural advisors living and working in peripheral rural areas. Based on the assessment of the educational needs and gaps for the sustainable development of the EU peripheral rural areas of Greece.

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Chênais, Nathalie; Nóbrega, Rafael; Thomas, Manon; Porcon, Béatrice; +6 Authors

    National audience; Les mécanismes impliqués dans le renouvèlement des cellules germinales souches chez les mâles immatures ou chez les individus adultes sexuellement matures restent très mal connus, en particulier chez les poissons. La production d'organoïdes testiculaires est une approche de choix pour étudier les interactions moléculaires entre les cellules somatiques et les cellules germinales ainsi que les modes de divisions symétriques et/ou asymétriques des cellules souches germinales. En effet, au contraire des cultures 2D, les organoïdes pourraient permettre de reproduire une niche germinale plus proche de celle rencontrée in vivo.

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Marta Via; Gang Chen; Francesco Canonaco; Kaspar R. Daellenbach; +21 Authors

    Particulate matter (PM) has become a major concern in terms of human health and climate impact. In particular, the source apportionment (SA) of organic aerosols (OA) present in submicron particles (PM1) has gained relevance as an atmospheric research field due to the diversity and complexity of its primary sources and secondary formation processes. Moreover, relatively simple but robust instruments such as the Aerosol Chemical Speciation Monitor (ACSM) are now widely available for the near-real-time online determination of the composition of the non-refractory PM1. One of the most used tools for SA purposes is the source-receptor positive matrix factorisation (PMF) model. Even though the recently developed rolling PMF technique has already been used for OA SA on ACSM datasets, no study has assessed its added value compared to the more common seasonal PMF method using a practical approach yet. In this paper, both techniques were applied to a synthetic dataset and to nine European ACSM datasets in order to spot the main output discrepancies between methods. The main advantage of the synthetic dataset approach was that the methods' outputs could be compared to the expected "true"values, i.e. the original synthetic dataset values. This approach revealed similar apportionment results amongst methods, although the rolling PMF profile's adaptability feature proved to be advantageous, as it generated output profiles that moved nearer to the truth points. Nevertheless, these results highlighted the impact of the profile anchor on the solution, as the use of a different anchor with respect to the truth led to significantly different results in both methods. In the multi-site study, while differences were generally not significant when considering year-long periods, their importance grew towards shorter time spans, as in intra-month or intra-day cycles. As far as correlation with external measurements is concerned, rolling PMF performed better than seasonal PMF globally for the ambient datasets investigated here, especially in periods between seasons. The results of this multi-site comparison coincide with the synthetic dataset in terms of rolling-seasonal similarity and rolling PMF reporting moderate improvements. Altogether, the results of this study provide solid evidence of the robustness of both methods and of the overall efficiency of the recently proposed rolling PMF approach. Acknowledgements IDAEA-CSIC is a Centre of Excellence Severo Ochoa (Spanish Ministry of Science and Innovation, Project CEX2018-000794-S). The authors gratefully acknowledge the Romanian National Air Quality Monitoring Network (NAQMN, https://www.calitateaer.ro/public/home-page/?__locale=ro, last access: September 2022) for providing NOx data. Financial support This research has been supported by the Generalitat de Catalunya (grant no. AGAUR 2017 SGR41), the European Cooperation in Science and Technology (grant no. COST Action CA16109 COLOSSAL), the Ministerio de Ciencia, Innovación y Universidades (CAIAC, grant no. PID2019-108990RB-I00 and FEDER, grant no. EQC2018-004598-P.), the Horizon 2020, the Ministry of Education and Research, Romania (grant nos. PN-III-P1-1.1-TE-2019-0340 and 18PFE/30.12.2021, 18N/2019), the Agence Nationale de la Recherche (grant no. PIA, ANR-11_LABX-0005-01), the Conseil Régional Hauts-de-France (CLIMIBIO grant), the Ministère de l'Enseignement Supérieur et de la Recherche (CARA grant), the Environmental Protection Agency (AEROSOURCE, grant no. 2016-CCRP-MS-31), the Department of the Environment, Climate and Communications (AC3 network grant), and the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SAMSAM, grant nos. IZCOZ9_177063 and PZPGP2_201992). We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI). Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospheric Measurem...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Atmospheric Measurement Techniques
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Sygma; Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Copernicus Publications
    Other literature type . 2022
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.5194/egusph...
    Preprint . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Atmospheric Measurem...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Atmospheric Measurement Techniques
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Sygma; Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Copernicus Publications
      Other literature type . 2022
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.5194/egusph...
      Preprint . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Guillemoto, Quentin; Devau, Nicolas; Picot-Colbeaux, Géraldine; Valdes, Danièle; +5 Authors

    International audience

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!