Advanced search in Research products
Research products
Searching FieldsTerms
Any field
The following results are related to SDSN - Greece. Are you interested to view more results? Visit OpenAIRE - Explore.
2 Research products, page 1 of 1

  • SDSN - Greece
  • Research software
  • Other research products
  • Open Access
  • PL
  • KE

Date (most recent)
  • Open Access English
    Muller-Karger, Frank E.; Miloslavich, Patricia; Bax, Nicholas J.; Simmons, Samantha; Costello, Mark J.; Pinto, Isabel Sousa; Canonico, Gabrielle; Turner, Woody; Gill, Michael; Montes, Enrique; +26 more
    Project: NSF | Collaborative Research: T... (1204082), EC | ECOPOTENTIAL (641762), EC | ODYSSEA (727277), NSF | Research Coordination Net... (1728913)

    Measurements of the status and trends of key indicators for the ocean and marine life are required to inform policy and management in the context of growing human uses of marine resources, coastal development, and climate change. Two synergistic efforts identify specific priority variables for monitoring: Essential Ocean Variables (EOVs) through the Global Ocean Observing System (GOOS), and Essential Biodiversity Variables (EBVs) from the Group on Earth Observations Biodiversity Observation Network (GEO BON) (see Data Sheet 1 in Supplementary Materials for a glossary of acronyms). Both systems support reporting against internationally agreed conventions and treaties. GOOS, established under the auspices of the Intergovernmental Oceanographic Commission (IOC), plays a leading role in coordinating global monitoring of the ocean and in the definition of EOVs. GEO BON is a global biodiversity observation network that coordinates observations to enhance management of the world’s biodiversity and promote both the awareness and accounting of ecosystem services. Convergence and agreement between these two efforts are required to streamline existing and new marine observation programs to advance scientific knowledge effectively and to support the sustainable use and management of ocean spaces and resources. In this context, the Marine Biodiversity Observation Network (MBON), a thematic component of GEO BON, is collaborating with GOOS, the Ocean Biogeographic Information System (OBIS), and the Integrated Marine Biosphere Research (IMBeR) project to ensure that EBVs and EOVs are complementary, representing alternative uses of a common set of scientific measurements. This work is informed by the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM), an intergovernmental body of technical experts that helps international coordination on best practices for observing, data management and services, combined with capacity development expertise. Characterizing biodiversity and understanding its drivers will require incorporation of observations fromtraditional andmolecular taxonomy, animal tagging and tracking efforts, ocean biogeochemistry, and ocean observatory initiatives including the deep ocean and seafloor. The partnership between large-scale ocean observing and product distribution initiatives (MBON, OBIS, JCOMM, and GOOS) is an expedited, effective way to support international policy-level assessments (e.g., the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services or IPBES), along with the implementation of international development goals (e.g., the United Nations Sustainable Development Goals). Refereed 14 Manual (incl. handbook, guide, cookbook etc) 2018-06-27

  • Open Access English
    Henle, Klaus; Potts, Simon; Kunin, William; Matsinos, Yiannis; Simila, Jukka; Pantis, John; Grobelnik, Vesna; Penev, Lyubomir; Settele, Josef;
    Publisher: Pensoft Publishers
    Project: EC | SCALES (226852), EC | STEP (244090), AKA | Coping with incomplete da... (250126)

    Human actions, motivated by social and economic driving forces, generate various pressures on biodiversity, such as habitat loss and fragmentation, climate change, land use related disturbance patterns, or species invasions that have an impact on biodiversity from the genetic to the ecosystem level. Each of these factors acts at characteristic scales, and the scales of social and economic demands, of environmental pressures, of biodiversity impacts, of scientific analysis, and of governmental responses do not necessarily match. However, management of the living world will be effective only if we understand how problems and solutions change with scale. SCALES (, a research project lasting for five years from May 2009 to July 2014, was seeking for ways to build the issue of scale into policy and decision-making and biodiversity management. It has greatly advanced our knowledge of how anthropogenic and natural processes interact across scales and affect biodiversity and it has evaluated in a very practical way how this knowledge can be used to improve the scale-sensitivity and effectiveness of policy instruments for conservation and sustainable use of biodiversity. During the project we have especially emphasized approaches that utilize existing biodiversity databases as they are the most widely available information in applied biodiversity conservation. We also tried to integrate the most appropriate assessment tools and policy instruments into a coherent framework to support biodiversity conservation across spatial and temporal scales. While the guidelines, practical solutions and special tools are presented as a special web based portal at a central place, the SCALETOOL (, the scientific outcome is widely spread over the scientific literature in regional and international journals. With the SCALES book we want to bundle the main results of SCALES in a comprehensive manner and present it in a way that is usable not only for pure scientists but also for people making decisions in administration, management, policy or even business and NGOs; to people who are more interested in the “practical” side of this issue. Yrjö Haila, Tampere