- home
- Advanced Search
2 Research products, page 1 of 1
Loading
- Other research product . Other ORP type . 2021Open Access EnglishAuthors:Nesheim, Ingrid; Sundnes, Frode; Enge, Caroline; Graversgaard, Morten; Brink, Cors van den; Farrow, Luke; Glavan, Matjaž; Hansen, Birgitte; Amorim Leitão, Inês; Rowbottom, Jenny; +1 moreNesheim, Ingrid; Sundnes, Frode; Enge, Caroline; Graversgaard, Morten; Brink, Cors van den; Farrow, Luke; Glavan, Matjaž; Hansen, Birgitte; Amorim Leitão, Inês; Rowbottom, Jenny; Tendler, Linda;Publisher: Molecular Diversity Preservation International - MDPICountry: SloveniaProject: EC | FAirWAY (727984)
Solutions to current complex environmental challenges demand the consultation and involvement of various groups in society. In light of the WFD’s requirements of public participation, this paper presents an analysis of the establishment and development of nine different multi-actor platforms (MAPs) across Europe set up as arenas for long-term engagements to solve water quality challenges in relation to agriculture. The MAPs represent different histories and legacies of engagement some are recent initiatives and some are affiliated with previous government-initiated projects, while other MAPs are long-term engagement platforms. A case study approach rawing on insights from the nine engagement processes is used to discuss conditions for enabling long-term multi-actor engagement. The perceived pressure for change and preferred prioritization in complying with mitigating water quality problems vary within and among the MAPs. The results show that governmental and local actors’ concern for water quality improvements and focusing on pressure for change are important for establishing meaningful multi-actor engagement when concerns translate into a clear mandate of the MAP. Furthermore, the degree to which the MAPs have been able to establish relationships and networks with other institutions such as water companies, agricultural and environmental authorities, farmers, and civil society organizations influences possibilities for long-term meaningful engagement.
- Other research product . 2018Open Access EnglishAuthors:Friedrich, J.; Janssen, F.; Aleynik, D.; Bange, H. W.; Boltacheva, N.; Çagatay, M. N.; Dale, A. W.; Etiope, G.; Erdem, Z.; Geraga, M.; +29 moreFriedrich, J.; Janssen, F.; Aleynik, D.; Bange, H. W.; Boltacheva, N.; Çagatay, M. N.; Dale, A. W.; Etiope, G.; Erdem, Z.; Geraga, M.; Gilli, A.; Gomoiu, M. T.; Hall, P. O. J.; Hansson, D.; He, Y.; Holtappels, M.; Kirf, M. K.; Kononets, M.; Konovalov, S.; Lichtschlag, A.; Livingstone, D. M.; Marinaro, G.; Mazlumyan, S.; Naeher, S.; North, R. P.; Papatheodorou, G.; Pfannkuche, O.; Prien, R.; Rehder, G.; Schubert, C. J.; Soltwedel, T.; Sommer, S.; Stahl, H.; Stanev, E. V.; Teaca, A.; Tengberg, A.; Waldmann, C.; Wehrli, B.; Wenzhöfer, F.;Project: EC | HYPOX (226213)
In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX ("In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies", http://www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of water-column oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.
2 Research products, page 1 of 1
Loading
- Other research product . Other ORP type . 2021Open Access EnglishAuthors:Nesheim, Ingrid; Sundnes, Frode; Enge, Caroline; Graversgaard, Morten; Brink, Cors van den; Farrow, Luke; Glavan, Matjaž; Hansen, Birgitte; Amorim Leitão, Inês; Rowbottom, Jenny; +1 moreNesheim, Ingrid; Sundnes, Frode; Enge, Caroline; Graversgaard, Morten; Brink, Cors van den; Farrow, Luke; Glavan, Matjaž; Hansen, Birgitte; Amorim Leitão, Inês; Rowbottom, Jenny; Tendler, Linda;Publisher: Molecular Diversity Preservation International - MDPICountry: SloveniaProject: EC | FAirWAY (727984)
Solutions to current complex environmental challenges demand the consultation and involvement of various groups in society. In light of the WFD’s requirements of public participation, this paper presents an analysis of the establishment and development of nine different multi-actor platforms (MAPs) across Europe set up as arenas for long-term engagements to solve water quality challenges in relation to agriculture. The MAPs represent different histories and legacies of engagement some are recent initiatives and some are affiliated with previous government-initiated projects, while other MAPs are long-term engagement platforms. A case study approach rawing on insights from the nine engagement processes is used to discuss conditions for enabling long-term multi-actor engagement. The perceived pressure for change and preferred prioritization in complying with mitigating water quality problems vary within and among the MAPs. The results show that governmental and local actors’ concern for water quality improvements and focusing on pressure for change are important for establishing meaningful multi-actor engagement when concerns translate into a clear mandate of the MAP. Furthermore, the degree to which the MAPs have been able to establish relationships and networks with other institutions such as water companies, agricultural and environmental authorities, farmers, and civil society organizations influences possibilities for long-term meaningful engagement.
- Other research product . 2018Open Access EnglishAuthors:Friedrich, J.; Janssen, F.; Aleynik, D.; Bange, H. W.; Boltacheva, N.; Çagatay, M. N.; Dale, A. W.; Etiope, G.; Erdem, Z.; Geraga, M.; +29 moreFriedrich, J.; Janssen, F.; Aleynik, D.; Bange, H. W.; Boltacheva, N.; Çagatay, M. N.; Dale, A. W.; Etiope, G.; Erdem, Z.; Geraga, M.; Gilli, A.; Gomoiu, M. T.; Hall, P. O. J.; Hansson, D.; He, Y.; Holtappels, M.; Kirf, M. K.; Kononets, M.; Konovalov, S.; Lichtschlag, A.; Livingstone, D. M.; Marinaro, G.; Mazlumyan, S.; Naeher, S.; North, R. P.; Papatheodorou, G.; Pfannkuche, O.; Prien, R.; Rehder, G.; Schubert, C. J.; Soltwedel, T.; Sommer, S.; Stahl, H.; Stanev, E. V.; Teaca, A.; Tengberg, A.; Waldmann, C.; Wehrli, B.; Wenzhöfer, F.;Project: EC | HYPOX (226213)
In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX ("In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies", http://www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of water-column oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.