Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to SDSN - Greece. Are you interested to view more results? Visit OpenAIRE - Explore.
1,508 Research products

  • SDSN - Greece
  • 2014-2023
  • Publications
  • Research software
  • FR
  • Mémoires en Sciences de l'Information et de la Communication
  • Hal-Diderot

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Romero, Bastien; Scotti, Ivan; Fady, Bruno; Ganteaume, Anne;

    Wildfires represent a highly selective disturbance for plant species (Bond & van Wilgen, 1996; Pausas & Keeley, 2009). In fire-prone ecosystems, such as in the Mediterranean regions, several plant species have developed adaptations to fire. The specific types of adaptation depend on fire regime, which is defined, among other things, by fire frequency and intensity (Bradshaw et al., 2011; Keeley; International audience; Many plants undergo adaptation to fire. Yet, as global change is increasing fire frequency worldwide, our understanding of the genetics of adaptation to fire is still limited. We studied the genetic basis of serotiny (the ability to disseminate seeds exclusively after fire) in the widespread, pioneer Mediterranean conifer Pinus halepensis Mill., by linking individual variation in serotiny presence and level to fire frequency and to genetic polymorphism in natural populations. After filtering steps, 885 single nucleotide polymorphisms (SNPs) out of 8000 SNPs used for genotyping were implemented to perform an in situ association study between genotypes and serotiny presence and level. To identify serotiny-associated loci, we performed random forest analyses of the effect of SNPs on serotiny levels, while controlling for tree size, frequency of wildfires, and background environmental parameters. Serotiny showed a bimodal distribution, with serotinous trees more frequent in populations exposed to fire in their recent history. Twenty-two SNPs found in genes involved in stress tolerance were associated with the presence-absence of serotiny while 37 found in genes controlling for flowering were associated with continuous serotiny variation. This study shows the high potential of P. halepensis to adapt to changing fire regimes, benefiting from a large and flexible genetic basis of trait variation.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecology and Evolutio...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecology and Evolution
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Sygma; Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Charlotte Baey; Henrik G. Smith; Maj Rundlöf; Ola Olsson; +2 Authors

    International audience; 1. Challenging calibration of complex models can be approached by using prior knowledge on the parameters. However, the natural choice of Bayesian inference can be computationally heavy when relying on Markov Chain Monte Carlo (MCMC) sampling. When the likelihood of the data is intractable, alternative Bayesian methods have been proposed. Approximate Bayesian Computation (ABC) only requires sampling from the data generative model, but may be problematic when the dimension of the data is high. 2. We studied alternative strategies to handle high dimensional data in ABC applied to the calibration of a spatially explicit foraging model for \textit{Bombus terrestris}. The first step consisted in building a set of summary statistics carrying enough biological meaning, i.e. as much as the original data, and then applying ABC on this set. Two ABC strategies, the use of regression adjustment leading to the production of ABC posterior samples, and the use of machine learning approaches to approximate ABC posterior quantiles, were compared with respect to coverage of model estimates and true parameter values. The comparison was made on simulated data as well as on data from two field studies. 3. Results from simulated data showed that some model parameters were easier to calibrate than others. Approaches based on random forests in general performed better on simulated data. They also performed well on field data, even though the posterior predictive distribution exhibited a higher variance. Nonlinear regression adjustment performed better than linear ones, and the classical ABC rejection algorithm performed badly. 4. ABC is an interesting and appealing approach for the calibration of complex models in biology, such as spatially explicit foraging models. However, while ABC methods are easy to implement, they require considerable tuning.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Modelling
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://doi.org/10.48550/arxiv...
    Article . 2022
    License: CC BY SA
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Modelling
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      https://doi.org/10.48550/arxiv...
      Article . 2022
      License: CC BY SA
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Quentin Guillemoto; Géraldine Picot-Colbeaux; Danièle Valdes; Nicolas Devau; +6 Authors

    The combination of managed aquifer recharge (MAR) with soil-aquifer treatment (SAT) has clear advantages for the future sustainable quality and quantity management of groundwater, especially when using treated wastewater. We built a Marthe flow and transport model of an MAR–SAT system located in a near-shore sand aquifer, for quantifying the influence of environmental factors (climate, tides, and operational conditions) on the coastal hydrosystem with regard to the fate of trace organic compounds (TrOCs). The simulations show the impact of these factors on flow rates and dilution, and thus, on the potential reactivity of TrOCs. The dilution of secondary treated wastewater (STWW) is variable, depending on the operations (feeding from infiltration ponds) and on shore proximity (dilution by saltwater). We show that, close to the ponds and during infiltration, the attenuation of TrOC concentrations can be explained by reactivity. At the natural outlet of the aquifer, the simulated average residence times ranged from about 70 to 500 days, depending upon seasonal dynamics. It is important to study TrOCs at site scale in order to anticipate the effect of natural variations on the SAT and on the fate of TrOCs.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Waterarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Water
    Other literature type . Article . 2023 . Peer-reviewed
    License: CC BY
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Waterarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Water
      Other literature type . Article . 2023 . Peer-reviewed
      License: CC BY
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: D F R Cleary; V Oliveira; N C M Gomes; A Bialecki; +1 Authors

    AbstractCalcareous sponges are an often overlooked element of sponge communities. In contrast to most other sponges, calcareous sponges produce calcium carbonate spicules, as opposed to the siliceous spicules of most sponges. Here, we investigated the bacterial communities of 17 sponge species, including type and paratype specimens of recently described calcareous species, sampled off the remote island of Rodrigues, in the Indian Ocean. The main axis of variation in a PCO analysis of all samples separated noncalcareous sponge species, including Axinyssa aplysinoides, Cinachyrella aff. australiensis, Petrosia seychellensis, Ircinia aff. variabilis, Spongia ceylonensis, Plakinastrella aff. clipptertonensis, Agelas aff. ceylonica, Agelas aff. mauritiana, and Hyrtios erectus from calcareous sponges, the noncalcareous Biemna tubulata, sediment, and seawater. Overall, the bacterial communities of calcareous sponges revealed unique prokaryotic profiles with low abundances of several bacterial phyla, and relatively high abundances of other taxa, for example, the phyla Fibrobacterota, Proteobacteria, and the SAR324 clade, the class Alphaproteobacteria, and orders Cytophagales and Cyanobacteriales, although there was considerable variation among species. Calcareous sponges also had a high dominance of unknown bacterial operational taxonomic units (OTUs). Considering the unique nature of these communities, further studies are needed to better understand the environmental and ecological drivers of calcareous sponge-associated bacterial communities and their relevance as potential sources of novel microbes of biotechnological interest.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEMS Microbiology Ec...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    FEMS Microbiology Ecology
    Article . 2023 . Peer-reviewed
    License: CC BY NC
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEMS Microbiology Ec...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      FEMS Microbiology Ecology
      Article . 2023 . Peer-reviewed
      License: CC BY NC
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Chartois, Marguerite; Mesmin, Xavier; Quiquerez, Ileana; Borgomano, Sabrina; +9 Authors

    AbstractPhilaenus spumarius (Ps) is considered the main insect vector of the bacterium Xylella fastidiosa (Xf) in Europe. As such, it is a key actor of the Xf pathosystem on which surveillance and management strategies could be implemented. Although research effort has increased in the past years, the ecological factors shaping Ps abundance and distribution across landscapes are still poorly known in most regions of Europe. We selected 64 plots of 500m2 in Corsican semi-natural habitats in which we sampled nymphs and adults of Ps during three years. While local or surrounding vegetation structure (low or high scrubland) had little effect on Ps abundance, we highlighted a positive relationship between Ps abundance and the density of Cistus monspeliensis in the plots. We also found larger populations of Ps in cooler and moister plots. The pattern of host association highlighted here is unique, which calls for more studies on the ecology of Ps in Europe, to help designing surveillance and management strategy for Xf.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific Reportsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scientific Reports
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scientific Reportsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scientific Reports
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Olsson, Sanna; Dauphin, Benjamin; Jorge, Véronique; Grivet, Delphine; +15 Authors

    Delivering material selected for breeding purposes into the wild in the context of sustainable forest management might reduce the levels of genetic diversity of future forests in comparison to that of natural populations. Another consequence might be a reduction of their resilience under uncertain future climatic and socio-economic conditions if these new populations lack adaptability. Despite the long tradition of breeding activities in Europe, there is still a need to assess the impact of genetically enriched material on forests’ resilience. In this study, we address (1) the genetic diversity of selected material compared to its wild ancestors, and (2) how to enrich breeding material to support forests’ resilience under changing socio-environmental conditions. We analysed 16 study cases of selected material delivered from breeding activities in four European forest tree species (Pinus halepensis Mill., Pinus nigra J.F. Arnold, Pinus pinaster Ait. and Populus nigra L.) with different levels of breeding. To answer these two questions, we first assessed and compared the genetic diversity of selected material versus natural populations using both putatively neutral and adaptive (based on diverging selection) Single Nucleotide Polymorphisms (SNPs). We then suggest how to enrich these populations for resilience under future climatic conditions by defining a core collection for each species including material from populations that will likely disappear under future conditions. Thanks to the large SNP datasets available for our focal species, we were able to detect some trends in our data. Expected and observed heterozygosity values for selected populations were almost always identical. The selected material showed small but significant genetic differentiation from their original population and their inbreeding coefficient was generally lower. However, the level of genetic improvement (i.e. low vs high) was not correlated with the observed genetic differences between selected material and natural populations.The genetic characterization of natural populations distributed across the species range, and the future projection of their range stability, made it possible to identify core-collections that would significantly enrich breeding populations under uncertain future environmental conditions. This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 676876-Gentree “Optimizing the management and sustainable use of forest genetic resources in Europe”; the Spanish Ministry of Science [Grant No RTI2018-094691-B-C32]. Peer reviewed 11 Pág.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Forest Ecology and M...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Forest Ecology and Management; CNR ExploRA
    Article . 2023 . Peer-reviewed
    License: CC BY NC ND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility41
    visibilityviews41
    downloaddownloads47
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Forest Ecology and M...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Forest Ecology and Management; CNR ExploRA
      Article . 2023 . Peer-reviewed
      License: CC BY NC ND
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Alaia Morell; Yunne-Jai Shin; Nicolas Barrier; Morgane Travers-Trolet; +2 Authors

    ABSTRACTMarine ecosystem models have been used to project the impacts of climate-induced changes in temperature and oxygen on biodiversity mainly through changes in species spatial distributions and primary production. However, fish populations may also respond to climatic pressures via physiological changes, leading to modifications in their life history that could either mitigate or worsen the consequences of climate change.Building on the individual-based multispecies ecosystem model OSMOSE, Bioen-OSMOSE has been developed to account for high trophic levels’ physiological responses to temperature and oxygen in future climate projections. This paper presents an overview of the Bioen-OSMOSE model, mainly detailing the new developments. These consist in the implementation of a bioenergetic sub-model that mechanistically describes somatic growth, sexual maturation and reproduction as they emerge from the energy fluxes sustained by food intake under the hypotheses of a biphasic growth model and plastic maturation age and size represented by a maturation reaction norm. These fluxes depend on temperature and oxygen concentration, thus allowing plastic physiological responses to climate change.To illustrate the capabilities of Bioen-OSMOSE to represent realistic ecosystem dynamics, the model is applied to the North Sea ecosystem. The model outputs are confronted with population biomass, catch, maturity ogive, mean size-at-age and diet data of each species of the fish community. A first exploration of current species spatial variability in response to temperature or oxygen is presented in this paper. The model succeeds in reproducing observations, with good performances for all indicators.This new model development opens the scope for new fields of research such as the exploration of seasonal or spatial variation in life history in response to biotic and abiotic factors at the individual, population and community levels. Understanding such variability is crucial to improve our knowledge on potential climate change impacts on marine ecosystems and to make more reliable projections under climate change scenarios.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress In Oceanogr...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Progress In Oceanography
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress In Oceanogr...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Progress In Oceanography
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Francisca Meneses; Nicole Montenegro; Constanza Schapheer; Jorge F. Perez-Quezada;

    Agricultural activities are important contributors to greenhouse gas (GHG) emissions in southern Chile. Three types of agricultural systems coexist within this region: traditional, conventional and agroecological. Historical changes in agricultural practices were identified from bibliographic sources and field surveys of 10 farms of each system type. A similarity analysis between systems was carried out using the survey data, which were also input to the Cool Farm Tool software to estimate GHG emissions of carbon dioxide, methane and nitrous oxide. The main historical changes identified were: (i) replacement of organic inputs by chemical products, (ii) replacement of workforce by agricultural machinery, (iii) decrease in crop diversity and (iv) decrease in total agricultural area. A multivariate analysis showed that agroecological systems are different from the traditional and conventional systems mainly because of the land use and the amount of organic fertiliser applied. However, no significant differences were found in the GHG emissions, which on average were 2999 ± 1521, 3443 ± 2376 and 3746 ± 1837 kg CO2-eq ha−1 year−1 (traditional, conventional and agroecological, respectively). Enteric fermentation was the main source of emissions in all agricultural systems, therefore methane was the most important GHG. Identifying the sources and practices that produce more emissions should help to improve management to reduce GHG emissions.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Agronomyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Agronomy
    Other literature type . Article . 2023 . Peer-reviewed
    License: CC BY
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Agronomyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Agronomy
      Other literature type . Article . 2023 . Peer-reviewed
      License: CC BY
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: X. Durrieu de Madron; D. Aubert; B. Charrière; S. Kunesch; +3 Authors

    International audience; This study aimed to describe the interannual variability of dense shelf water cascading and open ocean convection in the Gulf of Lions (NW Mediterranean) based on long-term temperature and current records and its impact on particle fluxes and associated metals. These observations highlight the predominant role of the rare intense events of dense shelf water cascading (1999/2000, 2005/2006, 2012/2013) in the basinward export of particles, which are mainly brought by rivers. Measurements of particulate trace metals in 2012 indicate that the monitored intense cascading event may be responsible for a significant fraction (~15%) of the annual input to the shelf. To this first process is added the effect of somehow more recurrent deep convection events (2005, 2009–2013) that remobilize the deep sediments, receptacle of coastal inputs, and disperse them rapidly at the scale of the northern Mediterranean basin, and gradually over the entire western basin. Coastal and oceanic dense water formations are key physical processes in the Mediterranean margins, whose reduction in intensity and recurrence has already been observed and also anticipate in climate scenarios that will likely change the dispersion pathways of chemical particles in this region.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Waterarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Water
    Other literature type . Article . 2023 . Peer-reviewed
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Waterarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Water
      Other literature type . Article . 2023 . Peer-reviewed
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Christopher Hoang; Olivier Magand; Jérôme Brioude; Andrea Dimuro; +6 Authors

    Environmental significanceWhereas extremely remote locations, such as Antarctica or isolated islands, are important for studying the troposphere, limitations regarding site access, electrical power, skilled personnel, and specialized supplies can make measurements challenging. Passive sampling approaches without the need for power, maintenance and frequent site visits are attractive, but their performance under the frequently harsh conditions encountered at such sites needs to be established. We tested the feasibility of recording long-term average concentrations of gaseous elemental mercury with a passive sampler at some of the world's most remote and extreme atmospheric research stations. The failures and successes of these tests informed the development of guidelines and procedures that increase the likelihood of obtaining reliable long-term records of atmospheric mercury with passive samplers.; International audience; Reliably recording very low ambient concentrations of gaseous elemental mercury (GEM) in remote regions is often required, for example in the context of evaluating how effective the Minamata Convention is in reducing global Hg emissions. However, sampling over extended periods of time at sites that are difficult to access can be very challenging. In order to establish what role inexpensive and easy-to-use passive air samplers may play in this regard, we deployed a sampler using a Radiello diffusive barrier and activated carbon sorbent for periods of up to three years and with sampling periods ranging from one to three months in some of the most extreme, remote and challenging global environments: at Concordia station on the Antarctic plateau, on Amsterdam Island in the remote Southern Indian Ocean and at several sites on the tropical island of La Reunion. The ability to reliably record the GEM concentrations at these sites was strongly influenced by the size of the sequestered amount of mercury relative to the extent and variability of the contamination of field blank samples. In some cases, acceptably low and consistent field blank contamination could only be achieved by storing samplers in sealed glass jars during transport and storage. The size of the sequestered amount is easily increased by extending deployment times, and the experience of the current study suggests that deployment periods in excess of two months are advisable. Sampling in Antarctica was compromised by the extreme low temperatures, which caused unknown sampling rates, hoar frost accumulation, material failure and potential failure of storage seals. While good agreement with GEM concentrations measured with an active sampler was noted on Amsterdam Island, the passive sampler derived levels at the Maido Observatory in La Reunion were notably higher than concentrations measured simultaneously with a Tekran vapour analyzer, which was possibly related to sampling rates being temporarily elevated at the very beginning of deployment at low GEM concentrations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Scienc...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental Science Atmospheres
    Article . 2023 . Peer-reviewed
    License: CC BY NC
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Scienc...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Environmental Science Atmospheres
      Article . 2023 . Peer-reviewed
      License: CC BY NC
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to SDSN - Greece. Are you interested to view more results? Visit OpenAIRE - Explore.
1,508 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Romero, Bastien; Scotti, Ivan; Fady, Bruno; Ganteaume, Anne;

    Wildfires represent a highly selective disturbance for plant species (Bond & van Wilgen, 1996; Pausas & Keeley, 2009). In fire-prone ecosystems, such as in the Mediterranean regions, several plant species have developed adaptations to fire. The specific types of adaptation depend on fire regime, which is defined, among other things, by fire frequency and intensity (Bradshaw et al., 2011; Keeley; International audience; Many plants undergo adaptation to fire. Yet, as global change is increasing fire frequency worldwide, our understanding of the genetics of adaptation to fire is still limited. We studied the genetic basis of serotiny (the ability to disseminate seeds exclusively after fire) in the widespread, pioneer Mediterranean conifer Pinus halepensis Mill., by linking individual variation in serotiny presence and level to fire frequency and to genetic polymorphism in natural populations. After filtering steps, 885 single nucleotide polymorphisms (SNPs) out of 8000 SNPs used for genotyping were implemented to perform an in situ association study between genotypes and serotiny presence and level. To identify serotiny-associated loci, we performed random forest analyses of the effect of SNPs on serotiny levels, while controlling for tree size, frequency of wildfires, and background environmental parameters. Serotiny showed a bimodal distribution, with serotinous trees more frequent in populations exposed to fire in their recent history. Twenty-two SNPs found in genes involved in stress tolerance were associated with the presence-absence of serotiny while 37 found in genes controlling for flowering were associated with continuous serotiny variation. This study shows the high potential of P. halepensis to adapt to changing fire regimes, benefiting from a large and flexible genetic basis of trait variation.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecology and Evolutio...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecology and Evolution
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Sygma; Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Charlotte Baey; Henrik G. Smith; Maj Rundlöf; Ola Olsson; +2 Authors

    International audience; 1. Challenging calibration of complex models can be approached by using prior knowledge on the parameters. However, the natural choice of Bayesian inference can be computationally heavy when relying on Markov Chain Monte Carlo (MCMC) sampling. When the likelihood of the data is intractable, alternative Bayesian methods have been proposed. Approximate Bayesian Computation (ABC) only requires sampling from the data generative model, but may be problematic when the dimension of the data is high. 2. We studied alternative strategies to handle high dimensional data in ABC applied to the calibration of a spatially explicit foraging model for \textit{Bombus terrestris}. The first step consisted in building a set of summary statistics carrying enough biological meaning, i.e. as much as the original data, and then applying ABC on this set. Two ABC strategies, the use of regression adjustment leading to the production of ABC posterior samples, and the use of machine learning approaches to approximate ABC posterior quantiles, were compared with respect to coverage of model estimates and true parameter values. The comparison was made on simulated data as well as on data from two field studies. 3. Results from simulated data showed that some model parameters were easier to calibrate than others. Approaches based on random forests in general performed better on simulated data. They also performed well on field data, even though the posterior predictive distribution exhibited a higher variance. Nonlinear regression adjustment performed better than linear ones, and the classical ABC rejection algorithm performed badly. 4. ABC is an interesting and appealing approach for the calibration of complex models in biology, such as spatially explicit foraging models. However, while ABC methods are easy to implement, they require considerable tuning.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Modelling
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://doi.org/10.48550/arxiv...
    Article . 2022
    License: CC BY SA
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Modelling
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      https://doi.org/10.48550/arxiv...
      Article . 2022
      License: CC BY SA
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Quentin Guillemoto; Géraldine Picot-Colbeaux; Danièle Valdes; Nicolas Devau; +6 Authors