Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to SDSN - Greece. Are you interested to view more results? Visit OpenAIRE - Explore.

  • SDSN - Greece
  • 2014-2023

Date (most recent)
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Olga M. Moreno-Pérez; Laura Arnalte-Mur; Pedro Cerrada-Serra; Victor Martinez-Gomez; +14 Authors

    AbstractThis study stems from a participatory foresight exercise conducted in nine Mediterranean, Baltic, Nordic and Eastern European regions, aiming to strengthen the role of small farms and small food businesses in ensuring food security. A wide range of stakeholders participated by attending workshops. They represented farmers’ organisations, food businesses, consumers’ organisations, NGOs, researchers, extension services, professional groups, and administration and public bodies. The actions proposed by participants are scanned and categorised around six broad objectives, stakeholders’ priorities and their underlying beliefs and preconceptions are discussed around the current debates of the literature, and the drivers that influence the feasibility of the proposed actions are discussed. Furthermore, the alignment of stakeholders’ -driven objectives with the European Strategies on food, agriculture, and rural areas is examined, with a focus on: (i) the EU Farm to Fork Strategy, (ii) the Rural Action Plan contained in the Long-Term Vision of Rural Areas developed by the EU Commission, and (iii) the Common Agricultural Policy in force since January 2023.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Food Securityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Food Security
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Food Securityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Food Security
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Rok Novak; Johanna Amalia Robinson; Tjaša Kanduč; Dimosthenis Sarigiannis; +2 Authors

    Participatory exposure research, which tracks behaviour and assesses exposure to stressors like air pollution, traditionally relies on time-activity diaries. This study introduces a novel approach, employing machine learning (ML) to empower laypersons in human activity recognition (HAR), aiming to reduce dependence on manual recording by leveraging data from wearable sensors. Recognising complex activities such as smoking and cooking presents unique challenges due to specific environmental conditions. In this research, we combined wearable environment/ambient and wrist-worn activity/biometric sensors for complex activity recognition in an urban stressor exposure study, measuring parameters like particulate matter concentrations, temperature, and humidity. Two groups, Group H (88 individuals) and Group M (18 individuals), wore the devices and manually logged their activities hourly and minutely, respectively. Prioritising accessibility and inclusivity, we selected three classification algorithms: k-nearest neighbours (IBk), decision trees (J48), and random forests (RF), based on: (1) proven efficacy in existing literature, (2) understandability and transparency for laypersons, (3) availability on user-friendly platforms like WEKA, and (4) efficiency on basic devices such as office laptops or smartphones. Accuracy improved with finer temporal resolution and detailed activity categories. However, when compared to other published human activity recognition research, our accuracy rates, particularly for less complex activities, were not as competitive. Misclassifications were higher for vague activities (resting, playing), while well-defined activities (smoking, cooking, running) had few errors. Including environmental sensor data increased accuracy for all activities, especially playing, smoking, and running. Future work should consider exploring other explainable algorithms available on diverse tools and platforms. Our findings underscore ML’s potential in exposure studies, emphasising its adaptability and significance for laypersons while also highlighting areas for improvement.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sensorsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sensors
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sensorsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sensors
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • 0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: David Dominguez; Daniel Montero; Maria Jesus Zamorano; Pedro L. Castro; +3 Authors

    Substitution of fish-based ingredients may alter the nutritional profile of the feeds, including the vitamin contents, ultimately leading to unbalanced vitamin supply. Vitamin A plays an essential role in epithelium preservation, cell differentiation, reproduction, and vision. It also intervenes in skeletogenesis through chondrocytes development. Therefore, low levels of vitamin A may cause poor growth and abnormal bone development among other symptoms. Besides, in gilthead seabream excess vitamin A altered bone structure and homeostasis, indicating that an upper level for vitamin A in feeds for this species must be defined. For this purpose, a practical plant-based diet (FM 10% and FO 6%) containing five increasing levels of vitamin A (24,000, 26,000, 27,000, 31,000, and 37,000 IU/kg) supplemented as retinyl acetate was formulated to identify the effects of high levels of vitamin A for gilthead seabream juveniles. The trial was conducted with 450 total fish distributed into 15 tanks, where each diet was tested in triplicates for 70 days. At the end of the trial, samples were taken for analyses of vitamin A—relevant markers. At the end of the trial the high levels of vitamin A supplementation did not cause a reduction in growth, whereas no significant effect was observed for the feed efficiency, specific growth rate, and feed convertion ratio. Although not significant, retinol content in liver showed a tendency to increase with the elevation of dietary vitamin A levels. Although minor, the highest level of vitamin A dietary content (37,000 IU/kg) caused a significant increase in caudal vertebrae partial fusion as well as caudal vertebrae malformations. Increasing dietary vitamin A was related to a reduction in the occurrence of microhemorrhages in the liver and a reduction in the presence of eosinophils associated to the pancreas. Overall, the results of the present study suggested that gilthead seabream juveniles fed a plant-based diet are able to tolerate very high levels of vitamin A supplementation when supplemented as retinyl acetate. Nevertheless, further supplementation should be avoided in order to reduce the prevalence of anomalies affecting the caudal vertebrae.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aquaculture Nutritio...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Aquaculture Nutrition
    Article . 2023 . Peer-reviewed
    License: CC BY
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aquaculture Nutritio...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Aquaculture Nutrition
      Article . 2023 . Peer-reviewed
      License: CC BY
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Áron Török; Ching-Hua Yeh; Davide Menozzi; Péter Balogh; +1 Authors
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Agricultu...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Agriculture and Food Research
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Agricultu...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Agriculture and Food Research
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Marsailidh M. Twigg; Chiara F. Di Marco; Elizabeth A. McGhee; Christine F. Braban; +21 Authors

    Under the EU Air Quality Directive (AQD) 2008/50/EC member states are required to undertake routine monitoring of PM2.5 composition at background stations. The AQD states for PM2.5 speciation this should include at least: nitrate (NO3−), sulfate (SO42−), chloride (Cl−), ammonium (NH4+), sodium (Na+), potassium (K+), magnesium (Mg2+), calcium (Ca2+), elemental carbon (EC) and organic carbon (OC). Until 2017, it was the responsibility of each country to determine the methodology used to report the composition for the inorganic components of PM2.5. In August 2017 a European standard method of measurement of PM2.5 inorganic chemical components (NO3−, SO42−, Cl−, NH4+, Na+, K+, Mg2+, Ca2+) as deposited on filters (EN16913:2017) was published. From August 2019 this then became the European standard method. This filter method is labour-intensive and provides limited time resolution and is prone to losses of volatile compounds. There is therefore increasing interest in the use of alternative automated methods. For example, the UK reports hourly PM2.5 chemical composition using the Monitor for AeRosols and Gases in Ambient air (MARGA, Metrohm, NL). This study is a pre-assessment review of available data to demonstrate if or to what extent equivalence is possible using either the MARGA or other available automatic methods, including the Aerosol Chemical Speciation Monitor (ACSM, Aerodyne Research Inc. US) and the Ambient Ion Monitor (AIM, URG, US). To demonstrate equivalence three objectives were to be met. The first two objectives focused on data capture and were met by all three instruments. The third objective was to have less than a 50% expanded uncertainty compared to the reference method for each species. Analysis of this objective was carried out using existing paired datasets available from different regions around the world. It was found that the MARGA (2006–2019 model) had the potential to demonstrate equivalence for all species in the standard, though it was only through a combination of case studies that it passed uncertainty criteria. The ACSM has the potential to demonstrate equivalence for NH4+, SO42−, and in some conditions NO3−, but did not for Cl− due to its inability to quantify refractory aerosol such as sea salt. The AIM has the potential for NH4+, NO3−, SO42−, Cl− and Mg2+. Future investigations are required to determine if the AIM could be optimised to meet the expanded uncertainty criterion for Na+, K+ and Ca2+. The recommendation is that a second stage to demonstrate equivalence is required which would include both laboratory and field studies of the three candidate methods and any other technologies identified with the potential to report the required species. The authors would like to thank the UK Environment Agency who funded this study. The measurements in this study were funded by the following bodies: - All the UK datasets were funded by UK Environment Agency under the UK Eutrophying and Acidifying Pollutant Network and the UKs Particle Numbers and Concentrations Network. The Auchencorth Moss measurements are supported by NERC UK Status, change and Projections of the Environment UK-SCaPE (NE/R016429/1). - The Revin fieldsite is coordinated by IMT Nord Europe in collaboration with the regional monitoring network (Atmo Grand-Est) and the National Reference Laboratory for Air Quality Monitoring (LCSQA) and funded by the French Ministry of Environment. ACSM measurements were supported by the Labex CaPPA project, which is funded by the French National Research Agency (ANR) through the PIA (Programme d’Investissement d’Avenir) under contract ANR-11-LABX-0005-01, and were part of the COST COLOSSAL Action CA16109. - Measurements in Barcelona Palau Reial were funded by the Spanish Ministry of Science and Innovation through CAIAC project (PID2019-108990RB-I00) and FEDER funds, through EQC2018-004598-P. - Measurements at the Mace Head Atmospheric Research Station are supported by the EPA-Ireland and the Department of Environment, Climate and Communications. - The Germany Federal Environment Agency (UBA) provided the financial support of this study and the deployment of the MARGA at the research station Melpitz under contracts No: 351 01 093 and 351 01 070. - The data from Kumpula was supported by the Academy of Finland as part of the Centre of Excellence program (project no 1118615). - US EPA gratefully acknowledges the contributions of Battelle and Wood (formerly Amec, Foster Wheeler) to the Research Triangle Park study. - The data from the San Pietro Capofiume was funded by the PEGASOS EU FP7 project. Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NERC Open Research A...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NERC Open Research A...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gustin, Mae Sexauer; Dunham-Cheatham, Sarrah; Allen, Natalie; Choma, Nicole; +7 Authors

    The Hg research community needs methods to more accurately measure atmospheric Hg concentrations and chemistry. The Reactive Mercury Active System (RMAS) uses cation exchange, nylon, and PTFE membranes to determine reactive mercury (RM), gaseous oxidized mercury, and particulate-bound mercury (PBM) concentrations and chemistry, respectively. New data for Atlanta, Georgia (NRGT) demonstrated that particulate-bound Hg was dominant and the chemistry was primarily N and S HgII compounds. At Great Salt Lake, Utah (GSL), RM was predominately PBM, with NS > organics > halogen > O HgII compounds. At Guadalupe Mountains National Park, Texas (GUMO), halogenated compound concentrations were lowest when air interacting with the site was primarily derived from the Midwest, and highest when the air was sourced from Mexico. At Amsterdam Island, Southern Indian Ocean, compounds were primarily halogenated with some N, S, and organic HgII compounds potentially associated with biological activity. The GEOS-Chem model was applied to see if it predicted measurements at five field sites. Model values were higher than observations at GSL, slightly lower at NRGT, and observations were an order of magnitude higher than modeled values for GUMO and Reno, Nevada. In general, data collected from 13 locations indicated that N, S, and organic RM compounds were associated with city and forest locations, halogenated compounds were sourced from the marine boundary layer, and O compounds were associated with long-range transport. Data being developed currently, and in the past, suggest there are multiple forms of RM that modelers must consider, and PBM is an important component of RM.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Langørgen, Øyvind; Saanum, Inge; Khalil, Roger Antoine; Haugen, Nils Erland L;

    In this work, woody biomass is converted by chemical looping combustion (CLC) in the auto-thermally operated 150-kW pilot unit at SINTEF Energy Research in Norway, using ilmenite as an oxygen carrier. The pilot unit consists of two inter-connected circulating fluidized bed reactors, being the air and fuel reactor, respectively. The unit is simplified compared to many other lab and pilot units by not having a carbon stripper. The aim of the present study is to evaluate the main performance parameters when operating a relatively large CLC unit in auto-thermal mode, using a cheap natural mineral, ilmenite, as oxygen carrier. Another aspect with the tests is to verify if the omission of a carbon stripper can provide high enough capture efficiencies for solid fuels as biomass, with a large share of volatiles and a char remnant with high reactivity. As a comparison, tests with petcoke were performed, to assess the effect when using a fuel with a low share of volatiles and slow char conversion. The results imply that CO2 capture efficiencies can be well above 95 % in a larger industrial unit operating on biomass, even without a carbon stripper, but that a carbon stripper is definitely needed for fuels with less volatiles and low char reactivity. Evaluation of CLC as a BECCS technology from tests on woody biomass in an auto-thermal 150-kW pilot unit

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SINTEF Openarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    SINTEF Open
    Article . 2023
    Data sources: SINTEF Open
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    International Journal of Greenhouse Gas Control
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Sygma; Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SINTEF Openarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      SINTEF Open
      Article . 2023
      Data sources: SINTEF Open
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      International Journal of Greenhouse Gas Control
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Sygma; Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Seyed Hasan Hajiabadi; Mahmoud Khalifeh; Reinier van Noort;

    Geopolymers (GPs), based on rocks and similar (waste) materials, have shown promising features as alternatives to Ordinary Portland Cement (OPC) in many applications. The properties of these materials can be tailored to a large degree, to meet the requirements of specific applications. This study presents a two-part granite-based GP system developed for wellbore sealant applications in Carbon Capture and Storage (CCS) operations. The system was modified by incorporating different concentrations of a Zn–K-based retarder. The performance of the GP system was then evaluated through consistency analyses, and uniaxial compressive strength (UCS) measurements. Further, the in-situ mechanical attributes of the GP system were assessed through tri-axial experiments at 90 °C and under varying confining pressures. Additionally, the morphology, mineralogy, and chemical composition of the hardened GP system were analyzed using X-ray diffraction (XRD), scanning electronic microscopy with energy dispersive spectroscopy (SEM-EDS), and Fourier transform infrared spectroscopy (FTIR). Consistency analyses revealed that slurries with higher retarder content exhibited improved fluidity but also longer setting times, which could result in fluid invasion and integrity issues. Accordingly, slurries with appropriate setting behavior were identified, striking a balance between rapid strength development and sufficient fluidity for downhole applications. The appropriate flow characteristics of the slurries and the stability of the solidified materials were also verified through rheological assessments, free-fluid tests, and sedimentation analyses. UCS measurements showed a continuous increase in strength for all GP samples, with optimized retarder content yielding the highest late-age mechanical strength. Tri-axial experiments showed that the in-situ Poisson's ratio, compressive strength, and compressive strength to Young's modulus ratio (C/E) of the GP system could be enhanced by 86.79%, 40.26% and 13.05%, respectively, through retarder content optimization. Furthermore, compressive strength and C/E ratios increased with higher confining pressure, while Poisson's ratio remained relatively constant. Moreover, XRD analyses revealed a transition from amorphous to crystalline phases within the GP system, depending on the retarder content, indicating enhanced network connectivity and the formation of new crystalline structures. FTIR analyses supported these observations, demonstrating the formation of new crystals and robust amorphous gels, indicating improved polycondensation and network connectivity in the GP system. Besides, SEM analysis of fractured samples exhibited distinct microstructural characteristics depending on the retarder content, with the optimized retarder content leading to higher crystallinity and more interconnected gel structures. These findings highlight the significance of microscale analysis alongside macroscale assessments when studying GP systems.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.1016/j.geoe...
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IFE Brage
    Article . 2023
    Data sources: IFE Brage
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    UiS Brage
    Article . 2023
    Data sources: UiS Brage
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.1016/j.geoe...
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IFE Brage
      Article . 2023
      Data sources: IFE Brage
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      UiS Brage
      Article . 2023
      Data sources: UiS Brage
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Luna M. van der Loos; Quinten Bafort; Samuel Bosch; Enric Ballesteros; +40 Authors

    Effective monitoring of non-indigenous seaweeds and combatting their effects relies on a solid confirmation of the non-indigenous status of the respective species. We critically analysed the status of presumed non-indigenous seaweed species reported from the Mediterranean Sea, the Northeast Atlantic Ocean and Macaronesia, resulting in a list of 140 species whose non-indigenous nature is undisputed. For an additional 87 species it is unclear if they are native or non-indigenous (cryptogenic species) or their identity requires confirmation (data deficient species). We discuss the factors underlying both taxonomic and biogeographic uncertainties and outline recommendations to reduce uncertainty about the non-indigenous status of seaweeds. Our dataset consisted of over 19,000 distribution records, half of which can be attributed to only five species (Sargassum muticum, Bonnemaisonia hamifera, Asparagopsis armata, Caulerpa cylindracea and Colpomenia peregrina), while 56 species (40%) are recorded no more than once or twice. In addition, our analyses revealed considerable variation in the diversity of non-indigenous species between the geographic regions. The Eastern Mediterranean Sea is home to the largest fraction of non-indigenous seaweed species, the majority of which have a Red Sea or Indo-Pacific origin and have entered the Mediterranean Sea mostly via the Suez Canal. Non-indigenous seaweeds with native ranges situated in the Northwest Pacific make up a large fraction of the total in the Western Mediterranean Sea, Lusitania and Northern Europe, followed by non-indigenous species with a presumed Australasian origin. Uncertainty remains, however, regarding the native range of a substantial fraction of non-indigenous seaweeds in the study area. In so far as analyses of first detections can serve as a proxy for the introduction rate of non-indigenous seaweeds, these do not reveal a decrease in the introduction rate, indicating that the current measures and policies are insufficient to battle the introduction and spread of non-indigenous species in the study area. European Marine Biological Resource Centre Belgium [GOH3817N]; European Marine Biological Resource Centre Belgium [I001621N]; Fonds Wetenschappelijk Onderzoek [3F020119]; POR PUGLIA FESR-FSE 2014/2020 [Asse VI, Action 6.5]; RESTORESEAS [EU-BiodivERsA BiodivRestore-253]; Institut des Sciences de l’Évolution – Montpellier [ISEM 2023-173]; Italian National Recovery and Resilience Plan [Mission 4, Component 2, ‘From research to business’: 1. NBFC, Investment 1.4, Project CN00000033]; IDEALG [ANR-10-BTBR-04; Institut des Sciences de l’Évolution – Montpellier Institut des Sciences de l’Évolution – Montpellier [ISEM 2023-173]. info:eu-repo/semantics/publishedVersion

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    European Journal of Phycology
    Article . 2023 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      European Journal of Phycology
      Article . 2023 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to SDSN - Greece. Are you interested to view more results? Visit OpenAIRE - Explore.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Olga M. Moreno-Pérez; Laura Arnalte-Mur; Pedro Cerrada-Serra; Victor Martinez-Gomez; +14 Authors

    AbstractThis study stems from a participatory foresight exercise conducted in nine Mediterranean, Baltic, Nordic and Eastern European regions, aiming to strengthen the role of small farms and small food businesses in ensuring food security. A wide range of stakeholders participated by attending workshops. They represented farmers’ organisations, food businesses, consumers’ organisations, NGOs, researchers, extension services, professional groups, and administration and public bodies. The actions proposed by participants are scanned and categorised around six broad objectives, stakeholders’ priorities and their underlying beliefs and preconceptions are discussed around the current debates of the literature, and the drivers that influence the feasibility of the proposed actions are discussed. Furthermore, the alignment of stakeholders’ -driven objectives with the European Strategies on food, agriculture, and rural areas is examined, with a focus on: (i) the EU Farm to Fork Strategy, (ii) the Rural Action Plan contained in the Long-Term Vision of Rural Areas developed by the EU Commission, and (iii) the Common Agricultural Policy in force since January 2023.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Food Securityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Food Security
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Food Securityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Food Security
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Rok Novak; Johanna Amalia Robinson; Tjaša Kanduč; Dimosthenis Sarigiannis; +2 Authors

    Participatory exposure research, which tracks behaviour and assesses exposure to stressors like air pollution, traditionally relies on time-activity diaries. This study introduces a novel approach, employing machine learning (ML) to empower laypersons in human activity recognition (HAR), aiming to reduce dependence on manual recording by leveraging data from wearable sensors. Recognising complex activities such as smoking and cooking presents unique challenges due to specific environmental conditions. In this research, we combined wearable environment/ambient and wrist-worn activity/biometric sensors for complex activity recognition in an urban stressor exposure study, measuring parameters like particulate matter concentrations, temperature, and humidity. Two groups, Group H (88 individuals) and Group M (18 individuals), wore the devices and manually logged their activities hourly and minutely, respectively. Prioritising accessibility and inclusivity, we selected three classification algorithms: k-nearest neighbours (IBk), decision trees (J48), and random forests (RF), based on: (1) proven efficacy in existing literature, (2) understandability and transparency for laypersons, (3) availability on user-friendly platforms like WEKA, and (4) efficiency on basic devices such as office laptops or smartphones. Accuracy improved with finer temporal resolution and detailed activity categories. However, when compared to other published human activity recognition research, our accuracy rates, particularly for less complex activities, were not as competitive. Misclassifications were higher for vague activities (resting, playing), while well-defined activities (smoking, cooking, running) had few errors. Including environmental sensor data increased accuracy for all activities, especially playing, smoking, and running. Future work should consider exploring other explainable algorithms available on diverse tools and platforms. Our findings underscore ML’s potential in exposure studies, emphasising its adaptability and significance for laypersons while also highlighting areas for improvement.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sensorsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sensors
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sensorsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sensors
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • 0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: David Dominguez; Daniel Montero; Maria Jesus Zamorano; Pedro L. Castro; +3 Authors

    Substitution of fish-based ingredients may alter the nutritional profile of the feeds, including the vitamin contents, ultimately leading to unbalanced vitamin supply. Vitamin A plays an essential role in epithelium preservation, cell differentiation, reproduction, and vision. It also intervenes in skeletogenesis through chondrocytes development. Therefore, low levels of vitamin A may cause poor growth and abnormal bone development among other symptoms. Besides, in gilthead seabream excess vitamin A altered bone structure and homeostasis, indicating that an upper level for vitamin A in feeds for this species must be defined. For this purpose, a practical plant-based diet (FM 10% and FO 6%) containing five increasing levels of vitamin A (24,000, 26,000, 27,000, 31,000, and 37,000 IU/kg) supplemented as retinyl acetate was formulated to identify the effects of high levels of vitamin A for gilthead seabream juveniles. The trial was conducted with 450 total fish distributed into 15 tanks, where each diet was tested in triplicates for 70 days. At the end of the trial, samples were taken for analyses of vitamin A—relevant markers. At the end of the trial the high levels of vitamin A supplementation did not cause a reduction in growth, whereas no significant effect was observed for the feed efficiency, specific growth rate, and feed convertion ratio. Although not significant, retinol content in liver showed a tendency to increase with the elevation of dietary vitamin A levels. Although minor, the highest level of vitamin A dietary content (37,000 IU/kg) caused a significant increase in caudal vertebrae partial fusion as well as caudal vertebrae malformations. Increasing dietary vitamin A was related to a reduction in the occurrence of microhemorrhages in the liver and a reduction in the presence of eosinophils associated to the pancreas. Overall, the results of the present study suggested that gilthead seabream juveniles fed a plant-based diet are able to tolerate very high levels of vitamin A supplementation when supplemented as retinyl acetate. Nevertheless, further supplementation should be avoided in order to reduce the prevalence of anomalies affecting the caudal vertebrae.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aquaculture Nutritio...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Aquaculture Nutrition
    Article . 2023 . Peer-reviewed
    License: CC BY
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aquaculture Nutritio...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Aquaculture Nutrition
      Article . 2023 . Peer-reviewed
      License: CC BY
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Áron Török; Ching-Hua Yeh; Davide Menozzi; Péter Balogh; +1 Authors
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Agricultu...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Agriculture and Food Research
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Agricultu...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/